Skip to main content
Log in

Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix decidua

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Gene transfer and plant regeneration systems have been developed for European larch (Larix decidua Mill.) in our laboratory. Aseptically germinated young seedlings were hypocotyl wound-inoculated withAgrobacterium rhizogenes strains 11325 containing a wild-type Ri (root-inducing) plasmid. Swollen stems appeared at infected wounds followed by either abundant hairy roots or adventitious shoot buds that developed within 3 to 4 wk after inoculation. No symptoms were seen on wounded but uninoculated seedlings. We demonstrated agrobacteria attached to larch cells by examination of scanning electron micrographs. Subsequently, calli derived from symptomatic tissues exhibited phytohormone autotrophic growth. Adventitious buds were elongated and rooted in vitro before being transferred to the greenhouse where the transformed whole plants grew normally. Transformants tested positive for opine production and transformation was further confirmed by Southern blot analysis with larch genomic DNAs isolated from both proliferated calli and needle tissue of transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, M. R. Gene transfer in forest trees. In: Hanover, J.; Kiethley, D., eds. Genetic manipulation of woody plants. New York: Plenum Press; 1988:25–41.

    Google Scholar 

  2. Anderson, A. R.; Moore, L. W. Host specificity in the genusAgrobacterium. Phytopathology 69:320–323; 1979.

    Google Scholar 

  3. Bekkaoui, F.; Detla, R. S. S.; Pilon, M., et al. The effects of promoter on transient expression in conifer cell lines. Theor. Appl. Genet. 79:353–359; 1990.

    Article  CAS  Google Scholar 

  4. Birnboim, M. C.; Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, C. L.; Lawrence, R. H. Culture of pine callus on a defined medium. For. Sci. 14:62–64; 1968.

    Google Scholar 

  6. Chiang, V. L.; Mroz, G. D.; Shaler, S. M., et al. Pulp production of a 16-year-old larch stand. Tappi J. 71:179–180; 1988.

    CAS  Google Scholar 

  7. Chilton, M.-D.; Farrand, S. K.; Bendich, A. J., et al.Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. USA 71:3672–3676; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Dandekar, A. M.; Gupta, P. K.; Durzan, D. J., et al. Transformation and foreign gene expression in micropropagated Douglas-firPseudotsuga menziesii. Bio/Technology 5:587–590; 1987.

    Article  CAS  Google Scholar 

  9. Davis, J. M.; Keathley, D. E. Detection and analysis of T-DNA in crown gall tumors and kanamycin-resistant callus ofRobinia pseudoacacia. Can. J. For. Res. 19:1118–1123; 1989.

    Article  CAS  Google Scholar 

  10. De Cleene, M.; De Ley, J. The host range of crown gall. Bot. Rev. 42:389–446; 1976.

    Google Scholar 

  11. Diner, A. M.; Strickler, A.; Karnosky, D. F. Initiation, elongation and remultiplication ofLarix decidua micropropagules. N. Z. J. For. Sci. 16:306–318; 1986.

    Google Scholar 

  12. Diner, A. M.; Karnosky, D. F. Differential responses of two conifers toin vitro inoculation withAgrobacterium rhizogenes. Eur. J. For. Pathol. 17:211–216; 1987.

    Google Scholar 

  13. Ellis, D. D.; Wayner, W. R.; Roberts, D. R., et al. The effect of antibiotics on elongation and callus and bud formation from embryonic tissue ofPicea glauca. Can. J. For. Res. 19:1343–1346; 1989.

    CAS  Google Scholar 

  14. Einspahr, D. W.; Wyckoff, G. W.; Fiscus, M. H. Larch: A fast-growing fiber source for the Lake States and Northeast. J. For. 82:104–106; 1984.

    Google Scholar 

  15. Feinberg, A. P.; Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Fillatti, J. J.; Sellmer, J.; McCown, B., et al.Agrobacterium-mediated transformation and regeneration ofPopulus. Mol. Gen. Genet. 206:192–199; 1987.

    Article  CAS  Google Scholar 

  17. Gresshoff, P. M.; Doy, C. H. Development and differentiation of haploidLycopersicon esculentum (Tomato). Plants 107:161–170; 1972.

    Article  Google Scholar 

  18. Hauptmann, R. M.; Widholm, J. M.; Paxton, J. D. Benomyl: a broad spectrum fungicide for use in plant cell and protoplast culture. Plant Cell Rep. 4:129–132; 1985.

    Article  CAS  Google Scholar 

  19. Hood, E. E.; Clapham, D. H.; Ekberg, I., et al. T-DNA presence and opine production in tumors ofPicea abies (L.) Karst induced byAgrobacterium tumefaciens A281. Plant Mol. Biol. 14:111–117; 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, Y.; Shin, D. I.; Karnosky, D. F. Evidence forAgrobacterium-mediated genetic transformation inLarix decidua. In: Ahuja, M. R., ed. Biotechnology of woody plant. New York: Plenum Press; 1991:In press.

    Google Scholar 

  21. Huang, Y.; Stokke, D. D.; Barnes, W. M., et al. Virulence ofAgrobacterium onLarix decidua and their cellular interactions as depicted by scanning electron microscopy. Plant Cell Reports. Submitted.

  22. Karnosky, D. F.; Diner, A. M. A cotyledon culture system for cloningLarix decidua andPinus banksiana. In: TAPPI research and Development Conference. Technical Association of Pulp and Paper Industry, Atlanta, Georgia. 1984:13–15.

    Google Scholar 

  23. Karnosky, D. F.; Mulcahey, A. Explant orientation and media manipulation affectLarix decidua adventitious bud quality and quantity. In Vitro Cell. Dev. Biol. 24:51A; 1988.

    Google Scholar 

  24. Klimaszewska, K. Recovery of somatic embryos and plantlets from protoplast cultures ofLarix X eurolepis. Plant Cell Rep. 8:440–444; 1989.

    Article  Google Scholar 

  25. Laliberte, S.; Lalonde, M. Sustained caulogenesis in callus cultures ofLarix X eurolepis initiated from short-shoot buds of a 12-year-old tree. Am. J. Bot. 75:767–777; 1988.

    Article  Google Scholar 

  26. Langor, D. W.; Raske, A. G. The Eastern larch beetle: another threat to our forestsColeoptera: Scolytidae). For. Chron. 65:276–279; 1989.

    Google Scholar 

  27. Lanier, G. N. Larch beetleDendroctonus simplex. In: Forest insect and disease problems for New York State, 1980–1981. Committee on Insects and Diseases. New York Section, Syracuse, New York; 1981:3.

    Google Scholar 

  28. Lippincott, J. A.; Lippincott, B. B. Tumor-initiating ability and nutrition in the genusAgrobacterium. J. Gen. Microbiol. 59:57–75; 1969.

    Google Scholar 

  29. Litvay, J. D.; Johnson, M. A.; Verma, D., et al. Conifer suspension culture medium development using analytical data from developing seeds. Inst. Paper Chem. Technical Paper Series, Institute of Paper Chemistry, Appleton, WI. no. 115:1–71; 1981.

    Google Scholar 

  30. Loopstra, C. A.; Stomp, A.-M.; Sederoff, R. R.Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol. Biol. 15:1–9; 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Mackay, J.; Seguin, A.; Lalonde, M. Genetic transformation of ninein vitro clones ofAlnus andBetula byAgrobacterium tumefciens. Plant Cell Rep. 7:229–232; 1988.

    Article  CAS  Google Scholar 

  32. Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory; 1982:76–389.

    Google Scholar 

  33. Matthysse, A. G.; Holmes, K. V.; Gurlitz, R. H. G. Elaboration of cellulose fibrils byAgrobacterium tumefaciens during attachment to carrot cell. J. Bacteriol. 145:583–585; 1981.

    PubMed  CAS  Google Scholar 

  34. McGranahan, G. H.; Leslie, C. A.; Uratsu, S. L., et al.Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6:800–804; 1988.

    Article  CAS  Google Scholar 

  35. Mehra-Palta, A.; Smeltzer, R. H.; Mott, R. L. Hormonal control of induced organogenesis: Experiments with excised plant parts of loblolly pine. Tappi J. 61:37–40; 1978.

    CAS  Google Scholar 

  36. Moore, L. W.; Anderson, A.; Kado, C. I. Gram-negative bacterium:Agrobacterium. In: Schaad, N. W., ed. Laboratory guide for identification of plant pathogenic bacteria. St. Paul, MN: American Phytopathological Society; 1980:22–23.

    Google Scholar 

  37. Mroz, G. D.; Reed, D. D.; Liechty, H. O. Volume production of a 16-year-old European larch stand. North. J. Appl. For. 5:160–161; 1988.

    Google Scholar 

  38. Nagmani, R.; Bonga, J. M. Embryogenesis in subcultured callus ofLarix decidua. Can. J. For. Res. 15:1088–1091; 1985.

    Google Scholar 

  39. Noda, T.; Tanaka, N.; Mano, Y., et al. Regeneration of horseradish hairy roots incited byAgrobacterium rhizogenes infection. Plant Cell Rep. 6:283–286; 1987.

    Article  Google Scholar 

  40. Ooms, G.; Hooykaas, P. J. J.; Moolenaar, G., et al. Crown gall plant tumors of abnormal morphology induced byAgrobacterium tumefaciens carrying mutant octopine Ti plasmids: Analysis of T-DNA functions. Gene 14:33–50; 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Otten, L.; DeGreve, H.; Hernalsteens, J. P., et al. Mandelian transmission of genes introduced into plants by the Ti plasmids ofAgrobacterium tumefaciens. Mol. Gen. Genet. 183:209–213; 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Otten, L. A. B. M.; Schilperoort, R. A. A rapid micro-scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochem. Biophys. Acta 527:497–500; 1978.

    PubMed  CAS  Google Scholar 

  43. Petit, A.; David, C.; Dahl, G. A., et al. Further extension of the opine concept: plasmids inAgrobacterium tumefaciens cooperate for opine degradation. Mol. Gen. Genet. 190:204–214; 1983.

    Article  CAS  Google Scholar 

  44. Shahin, E. A. Totipotency of tomato protoplasts. Theor. Appl. Genet. 69:235–241; 1985.

    Article  CAS  Google Scholar 

  45. Stachel, S. E.; Messens, E.; Van Montagu, M., et al. Identification of the sign molecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens. Nature 318:624–629; 1985.

    Article  Google Scholar 

  46. Tepfer, M.; Casse-Delbart, F.Agrobacterium rhizogenes as a vector for transforming higher plants. Microbiol. Sci. 4:24–28; 1987.

    PubMed  CAS  Google Scholar 

  47. Von Aderkas, P.; Bonga, J. M. Formation of haploid embryoids ofLarix decidua: Early embryogenesis. Am. J. bot. 75:619–628; 1988.

    Article  Google Scholar 

  48. White, F. F.; Ghidossi, G.; Gordon, M. P., et al. Tumor induction byAgrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc. Natl. Acad. Sci. USA 79:3193–3197; 1982.

    Article  PubMed  CAS  Google Scholar 

  49. White, F. F.; Nester, E. W. Relationship of plamids responsible for hairy root and crown gall tumorigenicity. J. Bacteriol. 144:710–720; 1980.

    PubMed  CAS  Google Scholar 

  50. Wullems, G. J.; Molendijk, L.; Schilperoort, R. Differential expression of crown gall tumor markers in transformants obtained afterin vitro Agrobacterium tumefaciens-induced transformation of cell wall regenerating protoplasts derived fromNicotiana tabacum. Proc. Natl. Acad. Sci. USA 78:4344–4348; 1981.

    Article  PubMed  CAS  Google Scholar 

  51. Yang, F.; Simpson, R. B. Revertant seedlings from crown gall tumors retain a portion of the bacterial Ti plasmid DNA sequences. Proc. Natl. Acad. Sci. USA 78:4151–4155; 1981.

    Article  PubMed  CAS  Google Scholar 

  52. Zimmer, E. A.; Rivin, C. J.; Walbot, V. A DNA isolation procedure suitable for most higher plant species. Plant. Mol. Biol. Newsletter. 2:93–96; 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Diner, A.M. & Karnosky, D.F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix decidua . In Vitro Cell Dev Biol - Plant 27, 201–207 (1991). https://doi.org/10.1007/BF02632217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632217

Key words

Navigation