Skip to main content
Log in

Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (β-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45–50 s, or treated with 1.5–2.0 μM okadaic acid or treated with 100–200 μM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2–3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 μM okadaic acid or 150 μM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

N6-benzyladenine

2,4-D:

2,4-dichlorophenoxyacetic acid

hpt :

Hygromycin phosphotransferase gene

uidA :

β-Glucuronidase

IBA:

Indole-3-butyric acid

PCR:

Polymerase chain reaction

References

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P (2002) Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 70:251–257

    Article  CAS  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Navarro L, Pena L (1998) Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage. Transgenic Res 7:51–59

    Article  CAS  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tiss Org Cult 70:51–60

    Article  CAS  Google Scholar 

  • Gould JH, Zhou YX, Padmanabhan V, Magallanes-Cedeno ME, Newton RJ (2002) Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol Breeding 10:131–141

    Article  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol 27:201–207

    Google Scholar 

  • James DJ, Uratsu S, Cheng JS, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Klimaszewska K, Lachance D, Pelletier G, Lelu M-A, Seguin A (2001) Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755

    Article  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Levee V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breeding 5:429–440

    Article  CAS  Google Scholar 

  • Le VQ, Belles-Isles J, Dusabenyagasani M, Tremblay FM (2001) An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J Exp Bot 52:2089–2095

    PubMed  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breeding 7:195–202

    Article  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High-efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Mourgues F, Chevreau E, Lambert C, Bondt A (1996) Efficient Agrobacterium-mediated transformation and recovery of transgenic plants from pear (Pyrus communis L.). Plant Cell Rep 16:245–249

    CAS  Google Scholar 

  • Noël GM, Tognetti JA, Pontis HG (2001). Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars. Planta 213:640–646

    Article  PubMed  CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Dura HN, Vila N, Navarro L (1995) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14:616–619

    Article  CAS  Google Scholar 

  • Pena L, Cervera M, Juarez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  CAS  Google Scholar 

  • Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape–Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2005a) Transgenic Christmas trees regenerated from Agrobacterium tumefaciens-mediated transformation of zygotic embryos using the green fluorescence protein as a reporter. Mol Breeding 16:235–246

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2005b) Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern eastern white pine (Pinus strobus L.) zygotic embryos. Plant Physiol Biochem 43:760–769

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ, Lin J, Charles TM (2006) Expression of a transcription factor from Capsicum annuum in pine calli counteracts the inhibitory effects of salt stress on adventitious shoot formation. Mol Genet Genomics 276:242–253

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Conifer Biotechnology Laboratory at East Carolina University for support and useful suggestions during this study. This work was supported by the Eastern North Carolina Christmas Tree Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Additional information

Communicated by W. H. Wu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Lin, J. & Newton, R.J. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine. Plant Cell Rep 26, 673–682 (2007). https://doi.org/10.1007/s00299-006-0270-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0270-y

Keywords

Navigation