Skip to main content
Log in

Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bean, S. J., Gooding, P. S., Mullineaux, P. M., Davies, D. R. A simple system for pea transformation. Plant Cell Rep.16:513–519L.1997.

    Google Scholar 

  • Chandra, M., Pal, A. Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep.15:248–253.1995.

    Article  CAS  Google Scholar 

  • Chandra, A., Pental, D. Regeneration and genetic transformation of grain legumes: an overview. Curr Sci.84(3):381–387.2003.

    Google Scholar 

  • Chilton, M. D., Currier, T. C., Farrand, S. K., Bendich, A. J., Gordon, M. P., Nester, E. W. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA.71:3672–3676.1974.

    Article  PubMed  CAS  Google Scholar 

  • Das, D. K., Siva Prakash, N., Bhalla-Sarin, N. An efficient regeneration system of black gram (Vigna mungo L.) through organogenesis. Plant Sci.134:199–206.1998.

    Article  CAS  Google Scholar 

  • Davies, D., Hamilton, R. J., Mullineaux, P. M. Transformation of peas. Plant Cell Rep.12:180–183.1993.

    Article  CAS  Google Scholar 

  • Di, R., Purcell, V., Collins, G. B., Ghabrial, S. A. Production of transgenic soybean lines expressing the bean pod mottle mosaic virus coat protein precursor gene. Plant Cell Rep.15:746–750.1996.

    Article  CAS  Google Scholar 

  • Gamborg, O. L., Miller, R. A., Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res.50:151–158.1968.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J. A., Hille, J., Vos, P., Goldbach, R. Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus mRNA. Plant Sci.48:89–98.1987.

    Article  CAS  Google Scholar 

  • Gill, R., Eapen, S., Rao, P. S. Morphogenic studies of cultured cotyledons of urd bean (Vigna mungo L. Hepper). J Plant Physiol.139:1–5.1987.

    Google Scholar 

  • Goel, S., Mudgal, A. K., Gupta, S. C. Development of plants from in vitro cultured shoot-tips of Vigna mungo and Vigna radiate. Trop Plant Sci Res.1:31–33.1983.

    Google Scholar 

  • Grant, J. E., Cooper, P. A., McAra, A. E., Frew, T. J. Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep.15:254–258.1995.

    Article  CAS  Google Scholar 

  • Gulati, A., Jaiwal, P. K. Culture conditions effecting plant regeneration from cotyledon of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell Rep.13:523–527.1990.

    Google Scholar 

  • Ignacimuthu, S. Agrobacterium-mediated transformation of Vigna sesquipedalis koern (asparagus bean). Indian J Exp Biol.38:493–498.2000.

    PubMed  CAS  Google Scholar 

  • Ignacimuthu, S., Franklin, G., Melchias, G. Multiple shoot formation and in vitro fruiting of Vigna mungo L. Hepper. Curr Sci.73:733–735,1997.

    Google Scholar 

  • Jaiwal, P. K., Kumari, R., Ignacimuthu, S., Potrykus, I., Sautter, C. Agrobacterium tumefaciens-mediated genetic transformation of mungbean [Vigna radiata (L.) Wilczek]—a recalcitrant grain legume. Plant Sci.161:239–247.2001.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A., Kavanagh, T. A., Bevan, N. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.6:3901–3907.1987.

    PubMed  CAS  Google Scholar 

  • Jordan, M. C., Hobbs, S. L. A. Evaluation of a cotyledonary node regeneration system for Agrobacterium-mediated transformation of pea (Pisum sativum L.). In vitro Cell Dev Biol Plant.29:77–88.1993.

    Article  Google Scholar 

  • Liu, H. K., Yang, C., Wei, Z. M. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta.1042–1049.2004.

  • Mathews, H. Morphogenetic responses from in vitro cultured seedling explants of mungbean [Vigna radiata (L.) Wilczek]. Plant Cell Tissue Organ Cult.11:233–240.1987.

    Article  Google Scholar 

  • Meurer, C. A., Dinkins, R. D., Collins G. B. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep.18:180–186.1998.

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant.15:473–497.1962.

    Article  CAS  Google Scholar 

  • Muruganantham, M., Ganapathi, A., Amutha, S., Vengadesan, G., Selvaraj, N. Shoot regeneration from immature cotyledonary nodes in black gram (Vigna mungo (L.) Hepper). Indian J. Biotechnol.4:551–555.2005.

    Google Scholar 

  • Muthukumar, B., Mariamma, M., Veluthambi, K., Gnanam, A. Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep.15:980–985.1996.

    Article  CAS  Google Scholar 

  • Olhoft, P. M., Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep.20:706–711.2001.

    Article  CAS  Google Scholar 

  • Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., Wang, K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica.136:167–179.2004.

    Article  CAS  Google Scholar 

  • Pigeaire, A., Abernethy, D., Smith, P. M., Simpson, K., Fletcher, N., Lu, C. Y., Atkins, C. A., Cornish, E. Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed.3:341–349.1997.

    Article  CAS  Google Scholar 

  • Rogers, S. O., Bendich, A. J. Extraction of DNA from plant tissues. In: Gelvin S. B., Schilperoot, R. A., eds. Plant molecular biology manual. Dordrecht: Kluwer.1–11.1988.

    Google Scholar 

  • Sahoo, L., Sugla, T., Jaiwal, P. K. In vitro regeneration and genetic transformation of Vigna species. In: Jaiwal P. K., Singh R. P., eds. Biotechnology for the improvement of legumes. Netherlands: Kluwer.1–40.2002.

    Google Scholar 

  • Saini, R., Jaiwal, P. K. Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep.24:164–171.2005.

    Article  PubMed  CAS  Google Scholar 

  • Saini, R., Jaiwal, S., Jaiwal, P. K. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep.21:851–859.2003.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press.1989.

    Google Scholar 

  • SAS (Statistical Analysis Systems). A guide to statistical and data analysis using JMP® and JMP IN® software. Cary, NC: SAS Institute.1996.

  • Schroeder, H. E., Schotz, A. H., Wardley-Richadson, T., Spencer, D., Higgins, T. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol.101:751–757.1993.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, P.R., Rholf, F.C. Biometry. San Francisco: Freeman.776.1981

  • Somers, D. A., Samac, D. A., Olhoft, P. M. Recent advances in legume transformation. Plant Physiol.131:892–899.2003.

    Article  PubMed  CAS  Google Scholar 

  • Tewari-Singh, N., Sen, J., Kiesecker, H. Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep.22:576–583.2004.

    Article  PubMed  CAS  Google Scholar 

  • Tivarekar, S., Eapen, S. High frequency plant regeneration from immature cotyledons of mungbean. Plant Cell Tissue Organ Cult.66:227–230.2001.

    Article  CAS  Google Scholar 

  • Van Larebeke, N., Genetello, C. H., Hernalsteens, J. P., De Picker, A., Zaenen, I., Messens, E., Van Montagu, M., Schell, J. Transfer of Ti plasmids between Agrobacterium strains by mobilization with conjugative plasmid. Mol Gen Genet.152:119–124.1977.

    Article  Google Scholar 

  • Zhang, Z., Xing, A., Staswick, P., Clemente, T. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult.56:37–46.1999.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Biotechnology (DBT), Government of India for the financial support (Grant no. BT/AGR/PR1446/07/68/99). The senior author is grateful to Prof. D. Girija and Mrs. Beena, Center for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Trissur, Kerala, for providing assistance and the opportunity to perform the radioactive labeling and Southern hybridization. The authors are grateful to Dr. Victor Gaba, Department of Plant Pathology, ARO Volcani Center, Bet Dagan, Israel for the critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muruganantham.

Additional information

Editor: T.J. Jones

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muruganantham, M., Amutha, S., Selvaraj, N. et al. Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In Vitro Cell.Dev.Biol.-Plant 43, 550–557 (2007). https://doi.org/10.1007/s11627-007-9060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9060-7

Keywords

Navigation