Skip to main content
Log in

Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Availability of a standard human melanocyte cell line with unlimited growth potential and otherwise normal melanocytic properties will greatly facilitate research in melanocyte biology and in vitro studies on the etiology of pigmentary disorders and melanoma. Using a retroviral vector, E6 and E7 open reading frames of human papilloma virus type 16 (HPV 16) have been introduced into cultured normal human melanocytes. Cells selected by increased resistance to geneticin conveyed by the vector and expressing E6E7 mRNA have been cloned to ensure genetic homogeneity. Since their establishment as primary cells, cloned PIG1 cells have undergone more than twice the amount of population doublings of senescent parental cells. Moreover, in passage numbers when parental cells had become senescent, proliferation of clonal cells was retained at levels exceeding those of normal human melanocytes in third passage by 100%. Further characterization has revealed that the cells remain dependent on tetradecanoyl phorbol 13-acetate (TPA) for growth and do not proliferate in soft agar nor form tumors in nude mice. The antigenic profile of the cells was slightly altered as compared to parental cells, but was incomparable to that of M14 melanoma cells. Importantly, PIG1 cells contain more melanin pigment than parental cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakker, P. J. M.; Aten, J. A.; Tukker, C. J., et al. Flow cytometric analysis of experimental parameters for the immunofluorescent labeling of BrdUrd in various tumour cell lines. Histochemistry 91:425–429; 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett, D.; Cooper, P. J.; Hart, I. R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int. J. Cancer 39:414–418; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Brüggen, J.; Sorg, C.; Macher, E. Membrane-associated antigens of human malignant melanoma: serological typing of cell lines using antisera from non-human primates. Cancer Immunol. Immunother. 5:53–68; 1978.

    Article  Google Scholar 

  4. Carrel, S.; Doré, J. F.; Ruiter, D. J., et al. The EORTC melanoma group exchange program: evaluation of a multicenter monoclonal antibody study. Int. J. Cancer 48:836–847; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Danen, E. H. J.; Ten Berge, P. J. M.; Van Muyen, G. N. P., et al. Emergence of α5β3 fibronectin- and αvβ3 vitronectin receptor expression in melanocytic tumor progression. Histopathology 24:249–256; 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Danen, E. H. J.; Van Muyen, G. N. P.; Van de Wiel-van Kemenade, E., et al. Regulation of integrin-mediated adhesion to laminin and collagen in human melanocytes and non- and highly metastatic melanoma cells. Int. J. Cancer 54:315–321; 1993.

    Article  PubMed  CAS  Google Scholar 

  8. DeCaprio, J. A.; Ludlow, J. W.; Figge, J., et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. De Vries, J. E.; Keizer, G. D.; te Velde, A. A., et al. Characterization of melanoma-associated surface antigens involved in the adhesion and motility of human melanoma cells. Int. J. Cancer 38:465–473; 1986.

    Article  PubMed  Google Scholar 

  10. Eisinger, M.; Marko, S. Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. USA 79:2018–2022; 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, A. S. Viral infections of humans: epidemiology and control. New York: Plenum Medical Book Co.; 1991:694.

    Google Scholar 

  12. Fidler, I. J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 5:29–49; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Fontijn, R.; Hop, C.; Brinkman, H. J., et al. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotropic replication-deficient retrovirus containing human papilloma virus. Exp. Cell Res. 216:199–207; 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Gadd, S. J.; Ashman, L. K. A murine monoclonal antibody specific for a cell surface antigen expressed by a subgroup of human myeloid leukemias. Leuk. Res. 9:1329–1336; 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Halaban, R.; Alfano, F. D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20:447–450; 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Halaban, R.; Pomerantz, S. H.; Marshall, S., et al. Regulation of tyrosinase in human melanocytes in culture. J. Cell Biol. 97:480–488; 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Halbert, C. L.; Demers, G. W.; Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of primary human epithelial cells. J. Virol. 65:473–478; 1991.

    PubMed  CAS  Google Scholar 

  18. Ishikoh, A. U.; Hayashi, A.; Tokimitsu, I., et al. Coordinate modulation of melanogenesis and type I trimer collagen secretion by type I collagen substratum during reversible conversion between melanotic and amelanotic cells on mouse B16 melanoma. J. Biochem. 116:610–614; 1994.

    PubMed  CAS  Google Scholar 

  19. Katano, M.; Saxton, R. E.; Cochran, A. J., et al. Establishment of an ascitic human melanoma cell line that metastasizes to lung and liver in nude mice. J. Cancer Res. Clin. Oncol. 108:197–203; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Le Poole, I. C.; Mutis, T.; van den Wijngaard, R. M. J. G. J., et al. A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J. Immunol. 151:7284–7292; 1993.

    PubMed  Google Scholar 

  21. Le Poole, I. C.; van den Wijngaard, R. M. J. G. J.; Westerhof, W., et al. Presence or absence of melanocytes in vitiligo lesions. J. Invest. Dermatol. 100:816–822; 1993.

    Article  PubMed  Google Scholar 

  22. Luo, D.; Chen, H.; Jimbow, K. Cotransfection of genes encoding human tyrosinase and TRP-1 prevents melanocyte death and enhances melanin pigmentation and gene expression of Lamp-1. Exp. Cell Res. 213:231–241; 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, A. D.; Buttimore, C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6:2895–2902; 1986.

    PubMed  CAS  Google Scholar 

  24. Münger, K.; Phelps, W. C.; Bubb, V., et al. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63:4417–4421; 1989.

    PubMed  Google Scholar 

  25. Perez-Reyes, N.; Halbert, C. L.; Smith, P. P., et al. Immortalization of primary human smooth muscle cells. Proc. Natl. Acad. Sci. USA 89:1224–1229; 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Seedorf, K.; Krämmer, G.; Dürst, M., et al. Human papillomavirus type 16 DNA sequence. Virology 145:181–185; 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Smit, N. P. M.; Le Poole, I. C.; van den Wijngaard, R. M. J. G. J., et al. Expression of different immunological markers by cultured human melanocytes. Arch. Dermatol. Res. 285:356–365; 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Smotkin, D.; Wettstein, F. O. Transcription of human papilloma virus type 16 early genes in a cervical cancer-derived and a cancer-derived cell line and identification of the E7 protein. Proc. Natl. Acad. Sci. USA 83:4680–4684; 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Swope, V. B.; Medrano, E. E.; Smalara, D., et al. Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp. Cell Res. 217:453–459; 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Thomson, T. M.; Mattes, M. J.; Roux, L., et al. Pigmentation-associated glycoprotein of human melanomas and melanocytes: definition with a mouse monoclonal antibody. J. Invest. Dermatol. 85:169–174; 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Tomita, Y.; Shibahara, S.; Takeda, A., et al. The monoclonal antibodies TMH-1 and TMH-2 specifically bind to a protein encoded at the murine b-locus, not to the authentic tyrosinase at the c-locus. J. Invest. Dermatol. 96:500–504; 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Van Muyen, G. N. P.; Cornelissen, L. M. H. A.; Jansen, C. F. J., et al. Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin. Exp. Metastasis 9:259–272; 1991.

    Article  Google Scholar 

  33. Van Muijen, G. N. P.; Jansen, C. F. J.; Cornelissen, L. M. H. A., et al. Establishment and characterization of human melanoma cell line (MV3) which is highly metastatic in nude mice. Int. J. Cancer 48:85–91; 1991.

    Article  PubMed  Google Scholar 

  34. Versteeg, R.; Noordermeer, I. A.; Krüsse-Wolters, M., et al. C-myc downregulates class I HLA-expression in human melanomas. EMBO J. 7:1023–1029; 1988.

    PubMed  CAS  Google Scholar 

  35. Watanabe, S.; Kanda, T.; Yoshiike, K. Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. Virology 63:965–969; 1989.

    CAS  Google Scholar 

  36. Walter, C.; Frenk, E.; Thermolysin treatment: a new method for dermoepidermal separation. J. Invest. Dermatol. 87:174; 1986 (abstr.)

    Google Scholar 

  37. Whittaker, J. R. Changes in melanogenesis during the dedifferentiation of chick retinal pigment cells in cell culture. Dev. Biol. 86:99–127; 1963.

    Article  Google Scholar 

  38. Whyte, P.; Buchbovich, K. J.; Horowitz, J. M., et al. Association between an oncogene and an antioncogene: the adenovirus Ela proteins bind to the retinoblastoma gene product. Nature (Lond.) 334:124–129; 1988.

    Article  CAS  Google Scholar 

  39. Yavuzer, U.; Keenan, E.; Lowings, P., et al. The microphtalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10:123–134; 1995.

    PubMed  CAS  Google Scholar 

  40. Zepter, K.; Häffner, A. C.; Trefzer, U., et al. Reduced growth factor requirements and accelerated cell-cycle kinetics in adult human melanocytes transformed with SV40 large T antigen. J. Invest. Dermatol. 104:755–762; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Poole, I.C., van den Berg, F.M., van den Wijngaard, R.M.J.G.J. et al. Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes. In Vitro Cell.Dev.Biol.-Animal 33, 42–49 (1997). https://doi.org/10.1007/s11626-997-0021-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0021-6

Key words

Navigation