Skip to main content

Generation of Human Cell Lines Using Lentiviral-Mediated Genetic Engineering

  • Protocol
  • First Online:
Epithelial Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 945))

Abstract

Even now, most human cell lines used in research are derived from tumor cells. They are still widely used because they grow well in vitro and so far have helped answering several basic biological questions. However, as modern biology moves into more sophisticated areas, scientists now need human cell lines closer to normal primary cells and further from transformed cancerous cells. The recent identification of cellular genes involved in cell cycling and senescence, together with the development of molecular tools capable of cleanly integrating transgenes into the genome of target cells, have moved the frontier of genetic engineering. In this chapter, we present a detailed hands-on protocol, based on lentivirus-derived vectors and a combination of two native cellular genes that has proven very efficient in generating immortal cell lines from several human primary cells, while preserving most of their original properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Earle WR (1943) Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J Natl Cancer Inst 4:165–212

    CAS  Google Scholar 

  2. Gey GO, Coffman WD, Tubicek MT (1952) Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12:264–265

    Google Scholar 

  3. Chen TR, Hay RJ, Macy ML (1983) Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins. Cancer Genet Cytogenet 10:351–362

    Article  PubMed  CAS  Google Scholar 

  4. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  PubMed  CAS  Google Scholar 

  5. Kriegler M, Perez CF, Hardy C, Botchan M (1984) Transformation mediated by the SV40 T antigens: separation of the overlapping SV40 early genes with a retroviral vector. Cell 38:483–491

    Article  PubMed  CAS  Google Scholar 

  6. Coursen JD, Bennett WP, Gollahon L, Shay JW, Harris CC (1997) Genomic instability and telomerase activity in human bronchial epithelial cells during immortalization by human papillomavirus-16 E6 and E7 genes. Exp Cell Res 235:245–253

    Article  PubMed  CAS  Google Scholar 

  7. Takeuchi M et al (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43:129–138

    Article  PubMed  CAS  Google Scholar 

  8. Ouyang H et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157:1623–1631

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi N et al (2000) Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287:1258–1262

    Article  PubMed  CAS  Google Scholar 

  10. Cudre-Mauroux C, Occhiodoro T, Konig S, Salmon P, Bernheim L, Trono D (2003) Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a duchenne myoblast cell line with long-term genotypic and phenotypic stability. Hum Gene Ther 14:1525–1533

    Article  PubMed  CAS  Google Scholar 

  11. Narushima M et al (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23:1274–1282

    Article  PubMed  CAS  Google Scholar 

  12. Zhu JY, Abate M, Rice PW, Cole CN (1991) The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 65:6872–6880

    PubMed  CAS  Google Scholar 

  13. Hainaut P (1995) The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7:76–82

    PubMed  CAS  Google Scholar 

  14. Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178

    Article  PubMed  CAS  Google Scholar 

  15. Miyazaki J et al (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  PubMed  CAS  Google Scholar 

  16. Efrat S, Fusco-DeMane D, Lemberg H, al Emran O, Wang X (1995) Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA 92:3576–3580

    Article  PubMed  CAS  Google Scholar 

  17. Wang S et al (1997) Isolation and characterization of a cell line from the epithelial cells of the human fetal pancreas. Cell Transplant 6:59–67

    Article  PubMed  CAS  Google Scholar 

  18. Itkin-Ansari P et al (2000) PDX-1 and cell-cell contact act in synergy to promote delta-cell development in a human pancreatic endocrine precursor cell line. Mol Endocrinol 14:814–822

    Article  PubMed  CAS  Google Scholar 

  19. Bodnar AG et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  20. Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8:279–282

    Article  PubMed  CAS  Google Scholar 

  21. Jiang XR et al (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114

    Article  PubMed  CAS  Google Scholar 

  22. Morales CP et al (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21:115–118

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  PubMed  CAS  Google Scholar 

  24. Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D (2000) Reversible immortalization of human primary cells by lentivector- mediated transfer of specific genes. Mol Ther 2:404–414

    Article  PubMed  CAS  Google Scholar 

  25. Saito M et al (2005) Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 20:50–57

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X et al (2006) Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem Biophys Res Commun 351:853–859

    Article  PubMed  CAS  Google Scholar 

  27. Eberhardt M et al (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345:1167–1176

    Article  PubMed  CAS  Google Scholar 

  28. Haga K et al (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 98:147–154

    Article  PubMed  CAS  Google Scholar 

  29. Fulcher ML et al (2009) Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 296:L82–L91

    Article  PubMed  CAS  Google Scholar 

  30. Unger C et al (2009) Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Hum Reprod 24:2567–2581

    Article  PubMed  CAS  Google Scholar 

  31. Lim F et al (2010) Reversibly immortalized human olfactory ensheathing glia from an elderly donor maintain neuroregenerative capacity. Glia 58:546–558

    PubMed  Google Scholar 

  32. Park IK et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    Article  PubMed  CAS  Google Scholar 

  33. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437

    Article  PubMed  CAS  Google Scholar 

  34. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521

    Article  PubMed  CAS  Google Scholar 

  35. Naldini L et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  36. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

  37. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed  CAS  Google Scholar 

  38. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  PubMed  CAS  Google Scholar 

  39. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  40. Zufferey R et al (1998) Self-inactivating lentivirus vector for safe and efficient In vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  41. Dull T et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  42. Gil J, Bernard D, Martinez D, Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6:67–72

    Article  PubMed  CAS  Google Scholar 

  43. Ramirez RD et al (2004) Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 64:9027–9034

    Article  PubMed  CAS  Google Scholar 

  44. Escarpe P et al (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8:332–341

    Article  PubMed  CAS  Google Scholar 

  45. Hanawa H et al (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5:242–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Chicago Diabetes Project (http://www.chicagodiabetesproject.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Salmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Salmon, P. (2012). Generation of Human Cell Lines Using Lentiviral-Mediated Genetic Engineering. In: Randell, S., Fulcher, M. (eds) Epithelial Cell Culture Protocols. Methods in Molecular Biology, vol 945. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-125-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-125-7_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-124-0

  • Online ISBN: 978-1-62703-125-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics