Skip to main content

Advertisement

Log in

Comparison of the Two Types of Bioresorbable Barriers to Prevent Intra-Abdominal Adhesions in Rats

  • original article
  • Published:
Journal of Gastrointestinal Surgery Aims and scope

Abstract

Purpose

The aim of this study was to evaluate the efficacy of two absorbable film barriers, polylactic acid and sodium hyaluronate–carboxymethyl cellulose, in preventing postoperative intra-abdominal adhesions, inflammation, and fibrosis in an animal model.

Methods

Forty Wistar albino rats were grouped as polylactic acid, sodium hyaluronate–carboxymethyl cellulose, and control. All rats underwent laparotomy with subsequent cecal wall abrasion and abdominal wall injury. The two treatment groups received polylactic acid or sodium hyaluronate–carboxymethyl cellulose film barriers, while control group received nothing. On postoperative day 21, three observers graded the intra-abdominal adhesions and resected specimens. Fibrosis, inflammation, and adhesions were graded using quantitative scoring systems.

Results

When compared to control group, polylactic acid group showed significantly less inflammation and adhesion (p < 0.005), while there was no significant difference for fibrosis. Sodium hyaluronate–carboxymethyl cellulose group has showed significantly less adhesions (p < 0.005), but there were no significant differences among fibrosis and inflammation when compared to control group. There were no significant differences between polylactic acid and sodium hyaluronate–carboxymethyl cellulose groups on adhesion formation, inflammation, or fibrosis.

Conclusions

Placement of polylactic acid or sodium hyaluronate–carboxymethyl cellulose film barriers between injured surfaces is associated with a significantly reduced rate of postoperative adhesions. No superiority was detected between two barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fazio V, Cohen Z, Fleshman J, van Goor H, Baur JJ, Wolf BG, et al. Reduction in adhesive small bowel obstruction by seprafilm adhesion barrier after intestinal resection. Dis Colon Rectum 2005;49:1–11. doi:10.1007/s10350-005-0268-5.

    Article  Google Scholar 

  2. Ellis HE, Moran BJ, Thompson JN, Parker MC, Wilson MS, Menzies D, et al. Adhesion related hospital readmissions after abdominal and pelvic surgery: a retrospective cohort study. Lancet 1999;353:1476–1480. doi:10.1016/S0140-6736(98)09337-4.

    Article  PubMed  CAS  Google Scholar 

  3. DeCherney A, diZerega GS. Clinical problems of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg Clin North Am 1997;77:3–11. doi:10.1016/S0039-6109(05)70574-0.

    Article  Google Scholar 

  4. Ray NF, Denton WG, Thamer M, Henderson SC, Perry S. Abdominal adhesiolysis: inpatient care and expenditures in the United States in 1994. J Am Coll Surg 1998;186:1–9. doi:10.1016/S1072-7515(97)00127-0.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman MG, Mc Lain AD, Moran BJ. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis Colon Rectum 2000;43:1297–1299. doi:10.1007/BF02237441.

    Article  PubMed  CAS  Google Scholar 

  6. Singer E, Livesey M, Barker I, Hurtig MB, Conlon PD. Development of a laboratory animal model of postoperative small intestinal adhesion formation in the rabbit. Can J Vet Res 1996;60:296–304.

    PubMed  CAS  Google Scholar 

  7. Schade D, Williamson J. The pathogenesis of peritoneal adhesions: an ultrastructural study. Ann Surg 1968;167:500–510. doi:10.1097/00000658-196804000-00006.

    Article  PubMed  CAS  Google Scholar 

  8. Kayaoğlu AH, Ozkan N, Hazinedaroğlu S, Ersoy OF, Koseoglu RD. An assessment of the effects of two types of bioresorbable barriers to prevent postoperative intra-abdominal adhesions in rats. Surg Today 2005;35:946–950. doi:10.1007/s00595-004-3050-8.

    Article  PubMed  Google Scholar 

  9. Vrijland W, Tseng L, Eijkman J, Hop WC, Jakimowicz JJ, Leguit P, et al. Fewer intraperitoneal adhesions with use of hyaluronic acid carboxymethylcellulose membrane. Ann Surg 2002;235:193–199. doi:10.1097/00000658-200202000-00006.

    Article  PubMed  Google Scholar 

  10. Ghellai AM, Stucchi AF, Lynch DJ, Skinner KC, Colt JM, Becker JM. Role of hyaluronate based membrane in the prevention of peritonitis induced adhesions. J Gastrointest Surg 2000;4:310–315. doi:10.1016/S1091-255X(00)80081-5.

    Article  PubMed  CAS  Google Scholar 

  11. Beck DE, Cohen Z, Fleshman JW, Kaufman HS, van Goor H, Wolff BG. A prospective randomised multicenter controlled study of the safety of seprafilm adhesion barrier in abdominopelvic surgery of intestine. Dis Colon Rectum 2003;46:1310–1319. doi:10.1007/s10350-004-6739-2.

    Article  PubMed  Google Scholar 

  12. Avital S, Bollinger TJ, Wilkinson JD, Marchetti F, Hellinger MD, Sands LR. Preventing intra-abdominal adhesions with polylactic acid film: an animal study. Dis Colon Rectum 2005;48:153–157. doi:10.1007/s10350-004-0748-z.

    Article  PubMed  Google Scholar 

  13. Welch WC, Thomas KA, Cornwall GB, Gerszten PC, Toth JM, Nemoto EM, et al. Use of polylactide resorbable film as an adhesion barrier. J Neurosurg 2002;97:413–422.

    PubMed  Google Scholar 

  14. Bessho K, Iızuka T, Murakami K. A bioabsorbable poly l lactide miniplate and screw system for osteosynthesis in oral and maxillofacial surgery. J Oral Maxillofac Surg 1997;55:941–945. doi:10.1016/S0278-2391(97)90065-3.

    Article  PubMed  CAS  Google Scholar 

  15. Knightly JJ, Agostina D, Cliffton EE. The effect of fibrinolysin and heparin on the formation of peritoneal adhesions. Surgery 1962;52:250–258.

    PubMed  CAS  Google Scholar 

  16. Hooker GD, Taylor BM, Driman DK. Prevention of adhesion formation with use of sodium hyaluronate based bioresorbable membrane in a rat model of ventral hernia repair with polypropylene mesh: a randomized controlled study. Surgery 1999;125:211–216.

    PubMed  CAS  Google Scholar 

  17. Van der Krabben A, Djikstra F, Nieuwenhuijzen M, Rejinen M, Schaapveld M, van Goor H. Morbidity and mortality of inadvertent enterotomy during adhesiotomy. Br J Surg 2000;87:467–471. doi:10.1046/j.1365-2168.2000.01394.x.

    Article  Google Scholar 

  18. Rodgers K, Cohn D, Hotovely A, Pines E, Diamond MP, diZerega G. Evaluation of polyethylene glycol polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models. Fertil Steril 1998;69:403–408. doi:10.1016/S0015-0282(97)00574-8.

    Article  PubMed  CAS  Google Scholar 

  19. Menzies D, Ellis H. Intra abdominal adhesions and their prevention by topical tissue plasminogen activator. J R Soc Med 1989;82:534–535.

    PubMed  CAS  Google Scholar 

  20. Su S, Nguyen KT, Satasiya P, Greilich PE, Tang L, Eberhart RC. Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly (l-lactic acid) fiber. J Biomater Sci 2005;16:353–370. doi:10.1163/1568562053654077.

    Article  CAS  Google Scholar 

  21. Menzies D. Postoperative adhesions: their treatment and relevance in clinical practice. Ann R Coll Surg Engl 1993;75:147–153.

    PubMed  CAS  Google Scholar 

  22. Bae J, Ahn S, Yim H, Jang K, Jin HK. Prevention of intraperitoneal adhesions and abscess by polysaccharides isolated from Phellinus spp in a rat peritonitis model. Ann Surg 2005;241:534–540. doi:10.1097/01.sla.0000154281.79639.89.

    Article  PubMed  Google Scholar 

  23. Greenstein S, Murphy T, Rush B, Alexander H. Evaluation of polylactic acid carbon mesh repair of ventral herniorraphy. Am J Surg 1986;151:635–639. doi:10.1016/0002-9610(86)90577-5.

    Article  PubMed  CAS  Google Scholar 

  24. Moreira H, Wexner SD, Yamaguchi T, Pikarsky AJ, Choi JS, Weiss EG, et al. Use of bioresorbable membrane (sodium hyaluronate + carboxymethyl cellulose) after controlled bowel injuries in a rabbit model. Dis Colon Rectum 2000;43:182–187. doi:10.1007/BF02236979.

    Article  PubMed  Google Scholar 

  25. Uchida K, Urata H, Mohri Y, Inoue M, Miki C, Kusunoki M. Seprafilm does not aggravate intraperitoneal septic conditions or evoke systemic inflammatory response. Surg Today 2005;35:1054–1059. doi:10.1007/s00595-005-3085-5.

    Article  PubMed  CAS  Google Scholar 

  26. Oncel M, Remzi FH, Senagore AJ, Connor JT, Fazio VW. Comparison of a novel liquid (Adcon-P) and a sodium hyaluronate and carboxymethylcellulose membrane (Seprafilm) in postsurgical adhesion formation in a murine model. Dis Colon Rectum 2003;46:187–191. doi:10.1007/s10350-004-6523-3.

    Article  PubMed  Google Scholar 

  27. McLeod R. Does seprafilm really reduce adhesive small bowel obstructions? Letter to the editor. Dis Colon Rectum 2006;49:1234–1238. doi:10.1007/s10350-006-0621-3.

    Article  PubMed  Google Scholar 

  28. Klingler PJ, Floch NR, Seeling MH, Branton SA, Wolfe JT, Metzger PP. Seprafilm induced peritoneal inflammation: a previously unknown complication. Dis Colon Rectum 1999;42:1639–1642. doi:10.1007/BF02236221.

    Article  PubMed  CAS  Google Scholar 

  29. Luijendik RW, de Lange DC, Wauters AP, Hop WC, Duron JJ, Pailler JL, et al. Foreign material in postoperative adhesions. Ann Surg 1996;223:242–248. doi:10.1097/00000658-199603000-00003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Ersoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ersoy, E., Ozturk, V., Yazgan, A. et al. Comparison of the Two Types of Bioresorbable Barriers to Prevent Intra-Abdominal Adhesions in Rats. J Gastrointest Surg 13, 282–286 (2009). https://doi.org/10.1007/s11605-008-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-008-0678-5

Keywords

Navigation