Skip to main content

Advertisement

Log in

Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

In recent years, rechargeable lithium-ion batteries (LIBs) have become widely used in everyday applications such as portable electronic devices, electric vehicles and energy storage systems. Despite this, the electrochemical performance of LIBs cannot meet the energy demands of rapidly growing technological evolutions. And although significant progress has been made in the development of corresponding anodes based primarily on carbon, oxide and silicon materials, these materials still possess shortcomings in current LIB applications. For example, graphite exhibits safety concerns due to an operating potential close to that of lithium (Li) metal plating whereas Li4Ti5O12 possesses low energy density for high operation potential and silicon experiences limited cyclability for large volume expansion during charging/discharging. Alternatively, polyanionic compounds such as (PO4)3–, (SiO4)4–, (SO4)2– and (BO3)3− as electrode materials have gained increasing attention in recent years due to their ability to stabilize structures, adjust redox couples and provide migration channels for "guest" ions, resulting in corresponding electrode materials with long-term cycling, high energy density and outstanding rate capability. Based on these advantages and combined with recent findings in terms of silicate anodes, this review will summarize the recent progress in the development of polyanion-based anode materials for LIBs and sodium-ion batteries. Furthermore, this review will present our latest research based on polyanion groups such as (GeO4)4– to compensate for the lack of available studies and to provide our perspective on these materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2015, American Chemical Society. b Potential-composition curve of LiTi2(PO4)3 performed in the GITT mode at a 0.05 C regime for 30 min followed by 30 min relaxation in the 3.40–2.00 V range vs. Li/Li+ and a PITT model; c evolution of the in situ X-ray diffraction patterns of a LiTi2(PO4)3 electrode during the first cycle under the GITT mode between 3.40–2.00 V vs. Li/Li+. Reprinted with permission from Ref. [56]. Copyright © 2002, American Chemical Society. d XRD pattern of NaTi2(PO4)3; e galvanostatic profiles of NaTi2(PO4)3 at a current density of 0.2 mA cm−2 in the organic electrolyte; f CV curves of NaTi2(PO4)3 in aqueous electrolytes with 2 M Na2SO4 and 4 M NaOH at a 0.5 mV s−1 sweep rate. Reprinted with permission from Ref. [59]. Copyright © 2011, The Electrochemical Society. g TEM images of microporous LiTi2(PO4)3 at different magnifications; h voltage profiles of LiTi2(PO4)3 at various rates; i charge/discharge curves of a LiTi2(PO4)3/LiMn2O4 full cell and the corresponding potential profile vs. the saturated calomel electrode (SEC). Reprinted with permission from Ref. [67]. Copyright © 2007, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Copyright © 2002, Elsevier Science B.V. All rights reserved. cf TEM images of mesoporous TiP2O7 calcined at 600, 700 and 800 °C and initial discharge curves of TiP2O7 sintered at different temperatures under a rate density of 0.1 C. Reprinted with permission from Ref. [77]. Copyright © 2005, Elsevier Science B.V. All rights reserved. gj TEM image of nano-TiP2O7 prepared at 900 °C and the corresponding HR-TEM lattice image, the galvanostatic discharge–charge profile and capacity vs. the cycle number. Reprinted with permission from Ref. [78]. Copyright © 2011, Elsevier Science B.V. All rights reserved. km FE-SEM images of the TiP2O7@graphene nanocomposite and pure TiP2O7, and the first five discharge/charge curves under a current density of 0.1 mA cm−2 in a voltage window of 0.2–2.5 V vs. Li/Li+. Reprinted with permission from Ref. [79]. Copyright © 2012, Elsevier Science B.V. All rights reserved. or SEM images of nanoporous microspherical TiP2O7 and the cross-sectional SEM image of a single secondary particle, and charge/discharge curves of TiP2O7 and the cycle life under a current density of 0.1 A g−1 in a voltage window of 1.5–3.5 V vs. Li/Li+. Reprinted with permission from Ref. [80]. Copyright © 2018, Science China Press and Springer-Verlag GmbH Germany

Fig. 4

Copyright © 2014, The Royal Society of Chemistry. c, d XRD pattern of Na3V2(PO4)3 and the corresponding crystal structure schematic. Reprinted with permission from Ref. [85]. Copyright © 2011, Elsevier B.V. All rights reserved. e Galvanostatic charge and discharge profiles of the carbon-coated Li3V2(PO4)3 composite at a current density of 0.013 mA cm−2 in the voltage region of 3.0–1.0 V vs. Li/Li+. Reprinted with permission from Ref. [93]. Copyright © 2010, Elsevier B.V. All rights reserved. f Galvanostatic charge and discharge profiles of Na3V2(PO4)3 in the voltage region of 3.0–1.0 V vs. Na/Na+. Reprinted with permission from Ref. [85]. Copyright © 2012, Elsevier B.V. All rights reserved

Fig. 5
Fig. 6

Copyright © 2002, American Chemical Society. c, d Voltage-capacity plots for the first 2 cycles in the voltage window of 0–3 V vs. Li/Li+ and the corresponding dQ/dV versus voltage plot; e, f ex situ XRD patterns under different states of charge. Reprinted with permission from Ref. [111]. Copyright © 2017, The Royal Society of Chemistry

Fig. 7

Copyright © 2017, Elsevier Ltd. All rights reserved. df SEM and TEM images of the nano-sized Li2TiSiO5 composite along with specific capacities at different current densities. Reprinted with permission from Ref. [113]. Copyright © 2018, Elsevier Ltd. All rights reserved. gi SEM and TEM images of the three-dimensional carbon modified Li2TiSiO5 composite using carbon nanotubes along with rate performances at different current densities (0.2, 0.5, 1, 2 and 4 A g−1). Reprinted with permission from Ref. [114]. Copyright © 2019, The Royal Society of Chemistry

Fig. 8

Copyright © 2019, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 9

Copyright © 2019, American Chemical Society

Fig. 10

Copyright © 2019, American Chemical Society. c Typical first discharge and two subsequent cycles for parent sitinakite material (Na2Ti2O3SiO4·2.76H2O) at a current density of 20 mA g−1 or a rate of 0.25 C (1 Li/formula unit in 4 h). Reprinted with permission from Ref. [124]. Copyright © 2006, American Chemical Society. d Charge–discharge curves of Na1.68H0.32Ti2O3SiO4·1.76H2O under a current density of 20 mA g−1 in the voltage window of 0.01–1.50 V vs. Na/Na+; e in situ XRD patterns collected during the first charge/discharge of a Na1.68H0.32Ti2O3SiO4·1.76H2O electrode cycled between 0 and 1.5 V under a current rate of 1/30 C. Labeled diffraction peaks correspond to graphite and current collectors (Al). The rest of the peaks are from the material. Reprinted with permission from Ref. [125]. Copyright © 2019, American Chemical Society

Fig. 11

Copyright © 2015, Chinese Journal of Inorganic Chemistry

Fig. 12
Fig. 13

Copyright © 2013, American Chemical Society

Fig. 14

Copyright © 2015, The Electrochemical Society

Fig. 15

Copyright © 2017, Elsevier Ltd. All rights reserved

Fig. 16
Fig. 17

Copyright © 2001, Elsevier Ltd. All rights reserved. ce Voltage-composition profiles of Co3B2O6, Cu3B2O6 and Ni3B2O6 LIB anode materials in the voltage range of 0–3 V vs. Li/Li+ at a current rate of 0.2 C. Reprinted with permission from Ref. [145]. Copyright © 2003, American Chemical Society

Fig. 18

Copyright © 2017, The Royal Society of Chemistry. df XRD pattern of Fe3BO5 and corresponding crystal structure along the (001) direction; charge–discharge curves of Fe3BO5 as LIB and SIB anode materials in the voltage range of 0.01–3.00 V at a current density of 100 mA g−1. Reprinted with permission from Ref. [147]. Copyright © 2019, The Royal Society of Chemistry 2019. gi XRD pattern of Ni3(BO3)2 and corresponding crystal structure along the (100) direction; galvanostatic charge–discharge profiles of Ni3(BO3)2 as a SIB anode material in the voltage range from 0.01 to 3.00 V vs. Na/Na+ at a current density of 200 mA g−1. Reprinted with permission from Ref. [148]. Copyright © 2019, Elsevier Ltd. All rights reserved. jl XRD patterns of Zn3B2O6 and N-doped carbon-coated Zn3B2O6; galvanostatic charge–discharge profiles of N-doped carbon-coated Zn3B2O6 as a SIB anode material in the voltage range from 0.01–3.00 V vs. Na/Na+ at a current density of 20 mA g−1 and cycle performances evaluated under 100 mA g−1. Reprinted with permission from Ref. [149]. Copyright © 2018, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 19

Copyright © 2018 IUPAC, The International Union of Pure and Applied Chemistry

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Bruce, P., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem.-Int. Edit. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  3. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  4. Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  5. Ji, L.W., Lin, Z., Alcoutlabi, M., et al.: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011). https://doi.org/10.1039/c0ee00699h

    Article  CAS  Google Scholar 

  6. Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Y.L., Cano, Z.P., Yu, A.P., et al.: Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z

    Article  CAS  Google Scholar 

  8. Lu, J., Chen, Z.W., Pan, F., et al.: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  9. Dahn, J.R., Zheng, T., Liu, Y., et al.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995). https://doi.org/10.1126/science.270.5236.590

    Article  CAS  Google Scholar 

  10. Sawai, K., Iwakoshi, Y., Ohzuku, T.: Carbon materials for lithium-ion (shuttlecock) cells. Solid State Ionics 69, 273–283 (1994). https://doi.org/10.1016/0167−2738(94)90416−2

    Article  CAS  Google Scholar 

  11. Shah, R., Alam, N., Razzaq, A.A., et al.: Effect of binder conformity on the electrochemical behavior of graphite anodes with different particle shapes. Acta Phys.-Chim. Sin. 35, 1382–1390 (2019). https://doi.org/10.3866/pku.whxb201903060

    Article  CAS  Google Scholar 

  12. Ohzuku, T., Ueda, A., Yamamoto, N.: Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995). https://doi.org/10.1149/1.2048592

    Article  CAS  Google Scholar 

  13. Zhu, G.N., Liu, H.J., Zhuang, J.H., et al.: Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 4, 4016–4022 (2011). https://doi.org/10.1039/C1EE01680F

    Article  CAS  Google Scholar 

  14. Li, J., Lewis, R.B., Dahn, J.R.: Sodium carboxymethyl cellulose. Electrochem. Solid-State Lett. 10, A17–A20 (2007). https://doi.org/10.1149/1.2398725

    Article  CAS  Google Scholar 

  15. Choi, S., Kwon, T.W., Coskun, A., et al.: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017). https://doi.org/10.1126/science.aal4373

    Article  CAS  PubMed  Google Scholar 

  16. Guo, F., Chen, P., Kang, T., et al.: Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes. Acta Phys.-Chim. Sin. 35, 1365−1371 (2019)

  17. Liu, J., Bao, Z.N., Cui, Y., et al.: Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x

    Article  CAS  Google Scholar 

  18. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H.S., Liu, Y.Y., Li, Y.Z., et al.: Lithium metal anode materials design: Interphase and host. Electrochem. Energy Rev. 2, 509–517 (2019). https://doi.org/10.1007/s41918-019-00054−2

    Article  Google Scholar 

  20. Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997). https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  21. Wang, Y.G., Wang, Y.R., Hosono, E., et al.: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem.-Int. Edit. 47, 7461–7465 (2008). https://doi.org/10.1002/anie.200802539

    Article  CAS  Google Scholar 

  22. Kang, B., Ceder, G.: Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009). https://doi.org/10.1038/nature07853

    Article  CAS  PubMed  Google Scholar 

  23. Tripathi, R., Ramesh, T.N., Ellis, B.L., et al.: Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem.-Int. Edit. 49, 8738–8742 (2010). https://doi.org/10.1002/anie.201003743

    Article  CAS  Google Scholar 

  24. Ati, M., Melot, B.C., Rousse, G., et al.: Structural and electrochemical diversity in LiFe1-δ ZnδSO4F solid solution: A Fe-based 3.9 V positive-electrode material. Angew. Chem.-Int. Edit. 50, 10574–10577 (2011). https://doi.org/10.1002/anie.201104648

    Article  CAS  Google Scholar 

  25. Dominko, R., Bele, M., Gaberšček, M., et al.: Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem. Commun. 8, 217–222 (2006). https://doi.org/10.1016/j.elecom.2005.11.010

    Article  CAS  Google Scholar 

  26. Nyten, A., Abouimrane, A., Armand, M., et al.: Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7, 156–160 (2005). https://doi.org/10.1016/j.elecom.2004.11.008

    Article  CAS  Google Scholar 

  27. Hu, J., Zheng, J., Pan, F.: Research progress into the structure and performance of LiFePO4 cathode materials. Acta Phys.-Chim. Sin. 35, 361–370 (2019). https://doi.org/10.3866/pku.whxb201805102

    Article  CAS  Google Scholar 

  28. Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013). https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  29. Stock, L.M.: The origin of the inductive effect. J. Chem. Educ. 49, 400 (1972). https://doi.org/10.1021/ed049p400

    Article  CAS  Google Scholar 

  30. Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., et al.: Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997). https://doi.org/10.1149/1.1837649

    Article  CAS  Google Scholar 

  31. Manthiram, A., Goodenough, J.B.: Lithium insertion into Fe2(MO4)3 frameworks: comparison of M = W with M = Mo. J. Solid State Chem. 71, 349–360 (1987). https://doi.org/10.1016/0022-4596(87)90242-8

    Article  CAS  Google Scholar 

  32. Barpanda, P., Dwibedi, D., Ghosh, S., et al.: Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: a sneak peak. Ionics 21, 1801–1812 (2015). https://doi.org/10.1007/s11581-015-1463-6

    Article  CAS  Google Scholar 

  33. Girish, H.N., Shao, G.Q.: Advances in high-capacity Li2MSiO4 (M = Mn, Fe Co, Ni, …) cathode materials for lithium-ion batteries. RSC Adv. 5, 98666–98686 (2015). https://doi.org/10.1039/c5ra18594g

    Article  CAS  Google Scholar 

  34. Lander, L., Tarascon, J.M., Yamada, A.: Sulfate-based cathode materials for Li-and Na-ion batteries. Chem. Rec. 18, 1394–1408 (2018). https://doi.org/10.1002/tcr.201800071

    Article  CAS  PubMed  Google Scholar 

  35. Barpanda, P., Lander, L., Nishimura, S.I., et al.: Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8, 1703055 (2018). https://doi.org/10.1002/aenm.201703055

    Article  CAS  Google Scholar 

  36. Jin, T., Li, H.X., Zhu, K.J., et al.: Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49, 2342–2377 (2020). https://doi.org/10.1039/c9cs00846b

    Article  CAS  PubMed  Google Scholar 

  37. Hosaka, T., Shimamura, T., Kubota, K., et al.: Inside front cover: Polyanionic compounds for potassium-ion batteries. Chem. Rec. 19, 688 (2019). https://doi.org/10.1002/tcr.201980402

    Article  Google Scholar 

  38. Lan, Y.Q., Yao, W.J., He, X.L., et al.: Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem.-Int. Edit. 59, 9255–9262 (2020). https://doi.org/10.1002/anie.201915666

    Article  CAS  Google Scholar 

  39. Yao, W.J., Armstrong, A.R., Zhou, X.L., et al.: An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nat. Commun. 10, 1–9 (2019). https://doi.org/10.1038/s41467-019-11077-0

    Article  CAS  Google Scholar 

  40. Song, T.Y., Yao, W.J., Kiadkhunthod, P., et al.: A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew. Chem.-Int. Edit. 59, 740–745 (2020). https://doi.org/10.1002/anie.201912272

    Article  CAS  Google Scholar 

  41. Lv, Z., Ling, M.X., Yue, M., et al.: Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: toward high-energy and high-power applications. J. Energy Chem. 55, 361–390 (2021). https://doi.org/10.1016/j.jechem.2020.07.008

    Article  Google Scholar 

  42. Essehli, R., Alkhateeb, A., Mahmoud, A., et al.: Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2–xVx(PO4)(SO4)2. J. Power Sources 469, 228417 (2020). https://doi.org/10.1016/j.jpowsour.2020.228417

    Article  CAS  Google Scholar 

  43. Wang, J.Y., Wang, Y., Seo, D.H., et al.: A high-energy NASICON-type cathode material for Na-ion batteries. Adv. Energy Mater. 10, 1903968 (2020). https://doi.org/10.1002/aenm.201903968

    Article  CAS  Google Scholar 

  44. Zheng, Y., Yao, Y.Z., Ou, J.H., et al.: A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49, 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k

    Article  CAS  PubMed  Google Scholar 

  45. Aono, H., Sugimoto, E., Sadaoka, Y., et al.: Ionic conductivity of the lithium titanium phosphate ( Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La ) systems. J. Electrochem. Soc. 136, 590–591 (1989). https://doi.org/10.1149/1.2096693

    Article  CAS  Google Scholar 

  46. Xu, X.X., Wen, Z.Y., Wu, X.W., et al.: Lithium ion-conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc. 90, 2802–2806 (2007). https://doi.org/10.1111/j.1551-2916.2007.01827.x

    Article  CAS  Google Scholar 

  47. Wang, Q., Wu, J.F., Lu, Z.H., et al.: A new lithium-ion conductor LiTaSiO5: theoretical prediction, materials synthesis, and ionic conductivity. Adv. Funct. Mater. 29, 1904232 (2019). https://doi.org/10.1002/adfm.201904232

    Article  CAS  Google Scholar 

  48. Zhao, Y., Li, X.F., Yan, B., et al.: Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016). https://doi.org/10.1002/aenm.201502175

    Article  CAS  Google Scholar 

  49. Wang, X., Wu, X.L., Guo, Y.G., et al.: Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 20, 1680–1686 (2010). https://doi.org/10.1002/adfm.200902295

    Article  CAS  Google Scholar 

  50. Zhang, W.M., Wu, X.L., Hu, J.S., et al.: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941–3946 (2008). https://doi.org/10.1002/adfm.200801386

    Article  CAS  Google Scholar 

  51. Wu, H.B., Chen, J.S., Hng, H.H., et al.: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4, 2526–2542 (2012). https://doi.org/10.1039/c2nr11966h

    Article  CAS  PubMed  Google Scholar 

  52. Poizot, P., Laruelle, S., Grugeon, S., et al.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045

    Article  CAS  PubMed  Google Scholar 

  53. Patoux, S., Masquelier, C.: Lithium insertion into titanium phosphates, silicates, and sulfates. Chem. Mater. 14, 5057–5068 (2002). https://doi.org/10.1021/cm0201798

    Article  CAS  Google Scholar 

  54. Senguttuvan, P., Rousse, G., Arroyo y de Dompablo, M.E. et al.: Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. J. Am. Chem. Soc. 135, 3897–3903 (2013). https://doi.org/10.1021/ja311044t

    Article  CAS  PubMed  Google Scholar 

  55. Qi, Y.R., Gao, W., Wang, H., et al.: Na3(TiOPO4)2F microspheres as a long-life anode for Na-ion batteries. Chem. Eng. J. 402, 126118 (2020). https://doi.org/10.1016/j.cej.2020.126118

    Article  CAS  Google Scholar 

  56. Delmas, C., Nadiri, A., Soubeyroux, J.L.: The NASICON-type titanium phosphates ATi2(PO4)3 (A=Li, Na) as electrode materials. Solid State Ionics 28, 419–423 (1988). https://doi.org/10.1016/s0167-2738(88)80075-4

    Article  Google Scholar 

  57. Lang, B., Ziebarth, B., Elsässer, C.: Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: a first-principles study. Chem. Mater. 27, 5040–5048 (2015). https://doi.org/10.1021/acs.chemmater.5b01582

    Article  CAS  Google Scholar 

  58. Park, S.I., Gocheva, I., Okada, S., et al.: Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067–A1070 (2011). https://doi.org/10.1149/1.3611434

    Article  CAS  Google Scholar 

  59. Zhang, Q.C., Man, P., He, B., et al.: Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy 67, 104212 (2020). https://doi.org/10.1016/j.nanoen.2019.104212

    Article  CAS  Google Scholar 

  60. Li, Z., Young, D., Xiang, K., et al.: Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013). https://doi.org/10.1002/aenm.201200598

    Article  CAS  Google Scholar 

  61. Wu, X.Y., Cao, Y.L., Ai, X.P., et al.: A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013

    Article  CAS  Google Scholar 

  62. Pang, G., Yuan, C., Nie, P., et al.: Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6, 6328–6334 (2014). https://doi.org/10.1039/c3nr06730k

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X.Y., Sun, M.Y., Shen, Y.F., et al.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3Intercalation chemistry. Chemsuschem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036

    Article  CAS  PubMed  Google Scholar 

  64. Wang, Y.S., Liu, J., Lee, B., et al.: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms7401

    Article  CAS  Google Scholar 

  65. Yang, G.Z., Song, H.W., Wu, M.M., et al.: Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J. Mater. Chem. A 3, 18718–18726 (2015). https://doi.org/10.1039/c5ta04491j

    Article  CAS  Google Scholar 

  66. Kumar, P.R., Jung, Y.H., Moorthy, B., et al.: Effect of electrolyte additives on NaTi2(PO4)3-C//Na3V2O2X( PO4)2F3−2X-MWCNT aqueous rechargeable sodium ion battery performance. J. Electrochem. Soc. 163, A1484–A1492 (2016)

    Article  CAS  Google Scholar 

  67. Luo, J.Y., Xia, Y.Y.: Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877–3884 (2007). https://doi.org/10.1002/adfm.200700638

    Article  CAS  Google Scholar 

  68. Dong, X., Chen, L., Su, X., et al.: Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew. Chem.-Int. Edit. 55, 7474–7477 (2016). https://doi.org/10.1002/anie.201602766

    Article  CAS  Google Scholar 

  69. Wang, H.B., Huang, K.L., Zeng, Y.Q., et al.: Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte. Electrochim. Acta 52, 3280–3285 (2007). https://doi.org/10.1016/j.electacta.2006.10.010

    Article  CAS  Google Scholar 

  70. Weng, G.M., Simon Tam, L.Y., Lu, Y.C.: High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries. J. Mater. Chem. A 5, 11764–11771 (2017). https://doi.org/10.1039/c7ta00482f

    Article  CAS  Google Scholar 

  71. Liu, Z.T., Qin, X.S., Xu, H., et al.: One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries. J. Power Sources 293, 562–569 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.092

    Article  CAS  Google Scholar 

  72. Shivashankaraiah, R.B., Manjunatha, H., Mahesh, K.C., et al.: Electrochemical characterization of LiTi2(PO4)3 as anode material for aqueous rechargeable lithium batteries. J. Electrochem. Soc. 159, A1074–A1082 (2012). https://doi.org/10.1149/2.074207jes

    Article  CAS  Google Scholar 

  73. Wessells, C., La Mantia, F., Deshazer, H., et al.: Synthesis and electrochemical performance of a lithium titanium phosphate anode for aqueous lithium-ion batteries. J. Electrochem. Soc. 158, A352 (2011). https://doi.org/10.1149/1.3536619

    Article  CAS  Google Scholar 

  74. Li, L.L., Wen, Y.H., Zhang, H., et al.: Core-shell structured LiTi2(PO4)3/C anode for aqueous lithium-ion batteries. ChemElectroChem 6, 1908–1914 (2019). https://doi.org/10.1002/celc.201900221

    Article  CAS  Google Scholar 

  75. Liu, L., Zhou, M., Wang, G., et al.: Synthesis and characterization of LiTi2(PO4)3/C nanocomposite as lithium intercalation electrode materials. Electrochim. Acta 70, 136–141 (2012). https://doi.org/10.1016/j.electacta.2012.03.046

    Article  CAS  Google Scholar 

  76. Uebou, Y.: Cathode properties of pyrophosphates for rechargeable lithium batteries. Solid State Ionics 148, 323–328 (2002). https://doi.org/10.1016/s0167-2738(02)00069-3

    Article  CAS  Google Scholar 

  77. Shi, Z.C., Wang, Q., Ye, W.L., et al.: Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials. Microporous Mesoporous Mater. 88, 232–237 (2006). https://doi.org/10.1016/j.micromeso.2005.09.013

    Article  CAS  Google Scholar 

  78. Aravindan, V., Reddy, M.V., Madhavi, S., et al.: Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J. Power Sources 196, 8850–8854 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.074

    Article  CAS  Google Scholar 

  79. Rai, A.K., Gim, J., Song, J.J., et al.: Electrochemical and safety characteristics of TiP2O7–graphene nanocomposite anode for rechargeable lithium-ion batteries. Electrochim. Acta 75, 247–253 (2012). https://doi.org/10.1016/j.electacta.2012.04.118

    Article  CAS  Google Scholar 

  80. Wen, Y.P., Liu, Y., Bin, D., et al.: High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Sci. China Chem. 62, 118–125 (2019). https://doi.org/10.1007/s11426-018-9373-0

    Article  CAS  Google Scholar 

  81. Wen, Y.P., Chen, L., Pang, Y., et al.: TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 8075–8082 (2017). https://doi.org/10.1021/acsami.6b14856

    Article  CAS  PubMed  Google Scholar 

  82. Liu, P., Ren, Y.R., Huang, X.B., et al.: Facile synthesis of TiP2O7/C nanoparticles as a competitive anode for aqueous lithium ion batteries. Electrochim. Acta 278, 42–50 (2018). https://doi.org/10.1016/j.electacta.2018.05.007

    Article  CAS  Google Scholar 

  83. Bin, D., Wen, Y.P., Yuan, Y.B., et al.: Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7−y anode in aqueous lithium ion batteries. Electrochim. Acta 320, 134555 (2019). https://doi.org/10.1016/j.electacta.2019.134555

    Article  CAS  Google Scholar 

  84. Senguttuvan, P., Rousse, G., Oró-Solé, J., et al.: A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions. J. Mater. Chem. A 1, 15284 (2013). https://doi.org/10.1039/c3ta13756b

    Article  CAS  Google Scholar 

  85. Jian, Z.L., Zhao, L., Pan, H.L., et al.: Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). https://doi.org/10.1016/j.elecom.2011.11.009

    Article  CAS  Google Scholar 

  86. Jung, Y.H., Lim, C.H., Kim, D.K.: Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 11350 (2013). https://doi.org/10.1039/c3ta12116j

    Article  CAS  Google Scholar 

  87. Yin, S.C., Grondey, H., Strobel, P., et al.: Electrochemical property: structure relationships in monoclinic Li3−yV2(PO4)3. J. Am. Chem. Soc. 125, 10402–10411 (2003). https://doi.org/10.1021/ja034565h

    Article  CAS  PubMed  Google Scholar 

  88. Yin, S.C., Strobel, P.S., Grondey, H., et al.: Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem. Mater. 16, 1456–1465 (2004)

    Article  CAS  Google Scholar 

  89. Jiang, T., Pan, W.C., Wang, J., et al.: Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim. Acta 55, 3864–3869 (2010). https://doi.org/10.1016/j.electacta.2010.02.026

    Article  CAS  Google Scholar 

  90. Liu, Y., Yang, B., Dong, X., et al.: A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance. Angew. Chem.-Int. Edit. 56, 16606–16610 (2017). https://doi.org/10.1002/anie.201710555

    Article  CAS  Google Scholar 

  91. An, Q.Y., Xiong, F.Y., Wei, Q.L., et al.: Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv. Energy Mater. 5, 1401963 (2015). https://doi.org/10.1002/aenm.201401963

    Article  CAS  Google Scholar 

  92. Jiang, Z., Li, Y.H., Han, C., et al.: Raising lithium storage performances of NaTi2(PO4)3 by nitrogen and sulfur dual-doped carbon layer. J. Electrochem. Soc. 167, 020550 (2020). https://doi.org/10.1149/1945-7111/ab6c5c

    Article  CAS  Google Scholar 

  93. Rui, X.H., Yesibolati, N., Chen, C.H.: Li3V2(PO4)3/C composite as an intercalation-type anode material for lithium-ion batteries. J. Power Sources 196, 2279–2282 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.024

    Article  CAS  Google Scholar 

  94. Mao, W.F., Tang, H.Q., Tang, Z.Y., et al.: Configuration of Li-ion vanadium batteries: Li3V2(PO4)3(cathode) Li3V2(PO4)3(anode). ECS Electrochem. Lett. 2, A69–A71 (2013). https://doi.org/10.1149/2.008307eel

    Article  CAS  Google Scholar 

  95. Zhang, X.F., Kühnel, R.S., Schroeder, M., et al.: Revisiting Li3V2(PO4)3 as an anode: an outstanding negative electrode for high power energy storage devices. J. Mater. Chem. A 2, 17906–17913 (2014). https://doi.org/10.1039/c4ta03845b

    Article  CAS  Google Scholar 

  96. Jian, Z.L., Han, W.Z., Liang, Y.L., et al.: Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2, 20231–20236 (2014). https://doi.org/10.1039/c4ta04630g

    Article  CAS  Google Scholar 

  97. Xiao, B., Zhang, W.H., Xia, H.F., et al.: V2(PO4)O/C@CNT hollow spheres with a core–shell structure as a high performance anode material for lithium-ion batteries. Mater. Chem. Front. 3, 456–463 (2019). https://doi.org/10.1039/c8qm00619a

    Article  CAS  Google Scholar 

  98. Ou, X., Liang, X.H., Yang, C.H., et al.: Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries. Energy Storage Mater. 12, 153–160 (2018). https://doi.org/10.1016/j.ensm.2017.12.007

    Article  Google Scholar 

  99. Xiao, B., Zhang, W.H., Wang, P.B., et al.: V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries. Electrochim. Acta 306, 238–244 (2019). https://doi.org/10.1016/j.electacta.2019.03.133

    Article  CAS  Google Scholar 

  100. Wang, P.F., Shao, L.Y., Qian, S.S., et al.: Li3−xNaxV2(PO4)3 (0\(\leqslant\)x\(\leqslant\)3): possible anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 200, 1–11 (2016). https://doi.org/10.1016/j.electacta.2016.03.097

    Article  CAS  Google Scholar 

  101. Karuppiah, S., Nallathamby, K.: Demonstration of in situ formed Li2NaV2(PO4)3 as a strain-free lithium battery anode. J. Phys. Chem. C 122, 7061–7066 (2018). https://doi.org/10.1021/acs.jpcc.7b12180

    Article  CAS  Google Scholar 

  102. Ren, M.M., Zhou, Z., Gao, X.P.: LiVOPO4 as an anode material for lithium ion batteries. J. Appl. Electrochem. 40, 209–213 (2009). https://doi.org/10.1007/s10800-009-9958-3

    Article  CAS  Google Scholar 

  103. Feng, J.K., Xia, H., Lai, M.O., et al.: NASICON-structured LiGe2(PO4)3 with improved cyclability for high-performance lithium batteries. J. Phys. Chem. C 113, 20514–20520 (2009). https://doi.org/10.1021/jp9085602

    Article  CAS  Google Scholar 

  104. Feng, X.J., He, J., Wang, X.R., et al.: Effect of VO43– substitution on the electrochemical properties of a LiSn2(PO4)3 anode material. Chem. Res. Chin. Univ. 34, 444–450 (2018). https://doi.org/10.1007/s40242-018-8003-7

    Article  CAS  Google Scholar 

  105. Difi, S., Nassiri, A., Saadoune, I., et al.: Electrochemical performance and mechanisms of NaSn2(PO4)3/C composites as anode materials for Li-ion batteries. J. Phys. Chem. C 122, 11194–11203 (2018). https://doi.org/10.1021/acs.jpcc.7b12770

    Article  CAS  Google Scholar 

  106. Moustafa, M.G., Sanad, M.M.S., Hassaan, M.Y.: NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries. J. Alloy. Compd. 845, 156338 (2020). https://doi.org/10.1016/j.jallcom.2020.156338

    Article  CAS  Google Scholar 

  107. Wang, S., Quan, W., Zhu, Z., et al.: Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat. Commun. 8, 627 (2017). https://doi.org/10.1038/s41467-017-00574-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, F., Li, R.G., Hou, M., et al.: Preparation and characterization of ramsdellite Li2Ti3O7 as an anode material for asymmetric supercapacitors. Electrochim. Acta 51, 61–65 (2005). https://doi.org/10.1016/j.electacta.2005.03.047

    Article  CAS  Google Scholar 

  109. Sun, Y., Zhao, L., Pan, H.L., et al.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1–10 (2013). https://doi.org/10.1038/ncomms2878

    Article  CAS  Google Scholar 

  110. Liu, Y., Liu, J.Y., Hou, M.Y., et al.: Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 5, 10902–10908 (2017). https://doi.org/10.1039/c7ta03173d

    Article  CAS  Google Scholar 

  111. Liu, J.Y., Pang, W.K., Zhou, T., et al.: Li2TiSiO5: A low potential and large capacity Ti-based anode material for Li-ion batteries. Energy Environ. Sci. 10, 1456–1464 (2017). https://doi.org/10.1039/c7ee00763a

    Article  CAS  Google Scholar 

  112. Liu, J.Y., Liu, Y., Hou, M.Y., et al.: Li2TiSiO5 and expanded graphite nanocomposite anode material with improved rate performance for lithium-ion batteries. Electrochim. Acta 260, 695–702 (2018). https://doi.org/10.1016/j.electacta.2017.12.019

    Article  CAS  Google Scholar 

  113. Wang, S.J., Wang, R.T., Bian, Y., et al.: In situ encapsulation of pseudocapacitive Li2TiSiO5 nanoparticles into fibrous carbon framework for ultrafast and stable lithium storage. Nano Energy 55, 173–181 (2019). https://doi.org/10.1016/j.nanoen.2018.10.052

    Article  CAS  Google Scholar 

  114. Jin, L.M., Gong, R.Q., Zhang, W.C., et al.: Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J. Mater. Chem. A 7, 8234–8244 (2019). https://doi.org/10.1039/c8ta12000e

    Article  CAS  Google Scholar 

  115. Jin, L.M., Gong, R.Q., Zheng, J.S., et al.: Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes. ChemElectroChem 6, 3020–3029 (2019). https://doi.org/10.1002/celc.201900765

    Article  CAS  Google Scholar 

  116. Wu, Y.F., Bo, S.H., Xia, Y.Y.: Solid-electrolyte interphase formation process on Li2TiSiO5 anode in LiPF6-based carbonate electrolyte. J. Power Sources 467, 228292 (2020). https://doi.org/10.1016/j.jpowsour.2020.228292

    Article  CAS  Google Scholar 

  117. Lim, J.M., Kim, S., Luu, N.S., et al.: High volumetric energy and power density Li2TiSiO5 battery anodes via graphene functionalization. Matter 3, 522–533 (2020). https://doi.org/10.1016/j.matt.2020.07.017

    Article  Google Scholar 

  118. Liu, K., Liu, Y., Zhu, H., et al.: NaTiSi2O6/C composite as a novel anode material for lithium-ion batteries. Acta Phys. -Chim. Sin. 36, 1912030 (2020)

    Google Scholar 

  119. He, D., Wang, B.Y., Wu, T.H., et al.: TiO2 nanocrystal-framed Li2TiSiO5 platelets for low-voltage lithium battery anode. Adv. Funct. Mater. 30, 2001909 (2020). https://doi.org/10.1002/adfm.202001909

    Article  CAS  Google Scholar 

  120. Liu, S.J., Tang, W.Z., Ma, J.Y., et al.: Li2TiSiO5 glass ceramic as anode materials for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 3, 9760–9768 (2020). https://doi.org/10.1021/acsaem.0c01357

    Article  CAS  Google Scholar 

  121. Liu, J.Y., Liu, Y., Wang, Y.G., et al.: Li/Na ion intercalation process into sodium titanosilicate as anode material. Batter. Supercaps 2, 867–873 (2019). https://doi.org/10.1002/batt.201900064

    Article  CAS  Google Scholar 

  122. He, D., Wu, T.H., Wang, B.Y., et al.: Novel Na2TiSiO5 anode material for lithium ion batteries. Chem. Commun. 55, 2234–2237 (2019). https://doi.org/10.1039/c9cc00043g

    Article  CAS  Google Scholar 

  123. Chaupatnaik, A., Srinivasan, M., Barpanda, P.: Narsarsukite Na2TiOSi4O10 as a low voltage silicate anode for rechargeable Li-ion and Na-ion batteries. ACS Appl. Energy Mater. 2, 2350–2355 (2019). https://doi.org/10.1021/acsaem.8b01906

    Article  CAS  Google Scholar 

  124. Milne, N.A., Griffith, C.S., Hanna, J.V., et al.: Lithium intercalation into the titanosilicate sitinakite. Chem. Mater. 18, 3192–3202 (2006). https://doi.org/10.1021/cm0523337

    Article  CAS  Google Scholar 

  125. Liu, Y., Liu, J.Y., Wu, Y.F., et al.: Na1.68H0.32Ti2O3SiO4·176H2O as a low-potential anode material for sodium-ion battery. ACS Appl. Energy Mater 1, 5151–5157 (2018). https://doi.org/10.1021/acsaem.8b01412

    Article  CAS  Google Scholar 

  126. Liu, Y., Yang, D., Wang, R.H., et al.: Niobium-doped titanosilicate sitinakite anode with low working potential and high rate for sodium-ion batteries. ACS Sustainable Chem. Eng. 7, 4399–4405 (2019). https://doi.org/10.1021/acssuschemeng.8b06326

    Article  CAS  Google Scholar 

  127. Liu, M.P., Hu, Y.X., Du, H.B.: Layered titanosilicates as energy storage anode materials for lithium ion batteries. Chin. J. Inorg. Chem. 31, 2425–2431 (2015)

    CAS  Google Scholar 

  128. Tang, Y.K., Gao, Y., Liu, L., et al.: Li(Na)2FeSiO4/C hybrid nanotubes: promising anode materials for lithium/sodium ion batteries. Inorg. Chem. Front. 7, 4438–4444 (2020). https://doi.org/10.1039/d0qi00864h

    Article  CAS  Google Scholar 

  129. Pritchard, H.O., Skinner, H.A.: The concept of electronegativity. Chem. Rev. 55, 745–786 (1955). https://doi.org/10.1021/cr50004a005

    Article  CAS  Google Scholar 

  130. Barpanda, P., Chotard, J.N., Recham, N., et al.: Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg. Chem. 49, 7401–7413 (2010). https://doi.org/10.1021/ic100583f

    Article  CAS  PubMed  Google Scholar 

  131. Dwibedi, D., Barpanda, P., Yamada, A.: Alluaudite battery cathodes. Small. Methods 4, 2000051 (2020). https://doi.org/10.1002/smtd.202000051

    Article  CAS  Google Scholar 

  132. Ati, M., Melot, B.C., Chotard, J.N., et al.: Synthesis and electrochemical properties of pure LiFeSO4F in the triplite structure. Electrochem. Commun. 13, 1280–1283 (2011). https://doi.org/10.1016/j.elecom.2011.08.023

    Article  CAS  Google Scholar 

  133. Barpanda, P., Oyama, G., Ling, C.D., et al.: Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Chem. Mater. 26, 1297–1299 (2014). https://doi.org/10.1021/cm4033226

    Article  CAS  Google Scholar 

  134. Barpanda, P.: Pursuit of sustainable iron-based sodium battery cathodes: two case studies. Chem. Mater. 28, 1006–1011 (2016). https://doi.org/10.1021/acs.chemmater.5b03926

    Article  CAS  Google Scholar 

  135. Nanjundaswamy, K.: Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92, 1–10 (1996). https://doi.org/10.1016/s0167-2738(96)00472-9

    Article  CAS  Google Scholar 

  136. Senguttuvan, P., Rousse, G., Vezin, H., et al.: Titanium(III) sulfate as new negative electrode for sodium-ion batteries. Chem. Mater. 25, 2391–2393 (2013). https://doi.org/10.1021/cm401181b

    Article  CAS  Google Scholar 

  137. Gnanavel, M., Raveau, B., Pralong, V.: Electrochemical Li/Na intercalation in TiOSO4, first member of the phosphate tungsten bronze-type family. J. Electrochem. Soc. 162, A465–A469 (2015). https://doi.org/10.1149/2.0831503jes

    Article  CAS  Google Scholar 

  138. Wu, N.T., Tian, W.D., Shen, J.K., et al.: Facile fabrication of a jarosite ultrathin KFe3(SO4)2(OH)6@rGO nanosheet hybrid composite with pseudocapacitive contribution as a robust anode for lithium-ion batteries. Inorg. Chem. Front. 6, 192–198 (2019). https://doi.org/10.1039/C8QI01165F

    Article  CAS  Google Scholar 

  139. Liu, Z., Zhou, H.J., Ang, S.S., et al.: Evaluation of low-cost natrochalcite Na[Cu2(OH)(H2O)(SO4)2] as an anode material for Li- and Na-ion batteries. Electrochim. Acta 211, 619–626 (2016). https://doi.org/10.1016/j.electacta.2016.05.129

    Article  CAS  Google Scholar 

  140. Legagneur, V.: LiMBO3 (M=Mn, Fe, Co): Synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 139, 37–46 (2001). https://doi.org/10.1016/s0167-2738(00)00813-4

    Article  CAS  Google Scholar 

  141. Bo, S.H., Nam, K.W., Borkiewicz, O.J., et al.: Structures of delithiated and degraded LiFeBO3, and their distinct changes upon electrochemical cycling. Inorg. Chem. 53, 6585–6595 (2014). https://doi.org/10.1021/ic500169g

    Article  CAS  PubMed  Google Scholar 

  142. Kim, J.C., Moore, C.J., Kang, B., et al.: Synthesis and electrochemical properties of monoclinic LiMnBO3 as a Li intercalation material. J. Electrochem. Soc. 158, A309 (2011). https://doi.org/10.1149/1.3536532

    Article  CAS  Google Scholar 

  143. Afyon, S., Mensing, C., Krumeich, F., et al.: The electrochemical activity for nano-LiCoBO3 as a cathode material for Li-ion batteries. Solid State Ionics 256, 103–108 (2014). https://doi.org/10.1016/j.ssi.2014.01.010

    Article  CAS  Google Scholar 

  144. Rowsell, J.L.C., Gaubicher, J., Nazar, L.F.: A new class of materials for lithium-ion batteries: iron(III) borates. J. Power Sources 97(98), 254–257 (2001). https://doi.org/10.1016/s0378-7753(01)00532-8

    Article  Google Scholar 

  145. Débart, A., Revel, B., Dupont, L., et al.: Study of the reactivity mechanism of M3B2O6 (with M = Co, Ni, and Cu) toward lithium. Chem. Mater. 15, 3683–3691 (2003). https://doi.org/10.1021/cm030057v

    Article  CAS  Google Scholar 

  146. Tian, J., Wang, B.F., Zhao, F., et al.: Highly active Fe3BO6 as an anode material for sodium-ion batteries. Chem. Commun. 53, 4698–4701 (2017). https://doi.org/10.1039/C7CC01612C

    Article  CAS  Google Scholar 

  147. Ping, Q.S., Xu, B.B., Ma, X., et al.: An iron oxyborate Fe3BO5 material as a high-performance anode for lithium-ion and sodium-ion batteries. Dalton Trans. 48, 5741–5748 (2019). https://doi.org/10.1039/c9dt00010k

    Article  CAS  PubMed  Google Scholar 

  148. Xu, B.B., Liu, Y., Tian, J., et al.: Ni3(BO3)2 as anode material with high capacity and excellent rate performance for sodium-ion batteries. Chem. Eng. J. 363, 285–291 (2019). https://doi.org/10.1016/j.cej.2019.01.089

    Article  CAS  Google Scholar 

  149. Wang, S., Zhang, X.B.: N-doped C@Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31, e1805432 (2019). https://doi.org/10.1002/adma.201805432

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Y., Bai, Q., Nolan, A.M., et al.: Lithium ion storage in lithium titanium germanate. Nano Energy 66, 104094 (2019). https://doi.org/10.1016/j.nanoen.2019.104094

    Article  CAS  Google Scholar 

  151. IUPAC: Periodic table of elements. https://iupac.org/what-we-do/periodic-table-of-elements (2018). Accessed 1 Dec 2018

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No. 21875045 and 22005059 and the China Postdoctoral Science Foundation with Grant No. 2019M661339.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. Xia led the project. All co-authors participated in the planning, discussion and writing of this review.

Corresponding author

Correspondence to Yongyao Xia.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, W. & Xia, Y. Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries. Electrochem. Energ. Rev. 4, 447–472 (2021). https://doi.org/10.1007/s41918-021-00095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00095-6

Keywords

Navigation