Skip to main content
Log in

Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, using a low-cost paper fiber (PF) as a substrate, eigenstate polyaniline–coated PFs with graphene (GO/PANI/PF) ternary materials were synthesized by using the chemical oxidative polymerization method. Electrochemical measurements showed that the GO/PANI/PF electrode exhibited an excellent electrochemical performance compared with the PANI electrode. By adjusting the ratio of PANI and PF, the as-prepared GO/PANI/PF–2.5% electrode exhibited the highest specific capacitance 937 F g−1 at current density 1 A g−1 in a 0.5 M H2SO4 aqueous solution, and 74.5% retention of initial capacitance after 2000 charge–discharge cycles at 5 A g−1. The symmetric capacitor on the basis of GO/PANI/PF nanocomposite delivers a superior energy density of 10.12 Wh kg−1 at 456 W kg−1 at a current density of 1 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma L, Su L, Zhang J, Zhao D, Qin C, Jin Z, Zhao K (2016) A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J Electroanal Chem 777:75–84. https://doi.org/10.1016/j.jelechem.2016.07.033

    Article  CAS  Google Scholar 

  2. Jiang Q, Shang Y, Sun Y, Yang Y, Hou S, Zhang Y, Xu J, Cao A (2019) Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers. Diam Relat Mater 92:198–207. https://doi.org/10.1016/j.diamond.2019.01.004

    Article  CAS  Google Scholar 

  3. Wang Q, Shao L, Ma Z, Xu J, Li Y, Wang C (2018) Hierarchical porous PANI/MIL-101 nanocomposites based solid-state flexible supercapacitor. Electrochim Acta 281:582–593. https://doi.org/10.1016/j.electacta.2018.06.002

    Article  CAS  Google Scholar 

  4. Yanilmaz M, Dirican M, Asiri AM, Zhang X (2019) Flexible polyaniline-carbon nanofiber supercapacitor electrodes. J Energy Storage 24:100766. https://doi.org/10.1016/j.est.2019.100766

    Article  Google Scholar 

  5. Xiong C, Li M, Zhao W, Duan C, Ni Y (2020) Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J Mater 6:523–531. https://doi.org/10.1016/j.jmat.2020.03.008

    Article  Google Scholar 

  6. Yi C, Zou J, Yang H, Leng X (2018) Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides. Trans Nonferrous Metal Soc China 28:1980–2001. https://doi.org/10.1016/S1003-6326(18)64843-5

  7. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130. https://doi.org/10.1016/j.jpowsour.2019.03.094

    Article  CAS  Google Scholar 

  8. Xing J, Tao P, Wu Z, Xing C, Liao X, Nie S (2019) Nanocellulose-graphene composites: a promising nanomaterial for flexible supercapacitors. Carbohydr Polym 207:447–459. https://doi.org/10.1016/j.carbpol.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  9. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  10. Wei G, Chun X, Sheng W, Jiang S (2012) Capacitive performance of polyaniline prepared by soft template method. Procedia Eng 27:1378–1385. https://doi.org/10.1016/j.proeng.2011.12.597

    Article  CAS  Google Scholar 

  11. Xu H, Wu J, Li C, Zhang JL, Wang XX (2015) Investigation of polyaniline films doped with Co2+ as the electrode material for electrochemical supercapacitors. Ionics 21:1163–1170. https://doi.org/10.1007/s11581-014-1267-0

    Article  CAS  Google Scholar 

  12. Mujawar SH, Ambade SB, Battumur T, Ambade RB, Lee SH (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466. https://doi.org/10.1016/j.electacta.2011.02.043

    Article  CAS  Google Scholar 

  13. Lei D, Devarayan K, Seo M-K, Kim YG, Kim BS (2015) Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors. Mater Lett 154:173–176. https://doi.org/10.1016/j.matlet.2015.04.095

    Article  CAS  Google Scholar 

  14. Xu H, Wu J, Li Q et al (2018) Chemical synthesis of De–doped polyaniline for high performance aqueous supercapacitive material. J Electrochem Soc 165:A3903–A3909. https://doi.org/10.1149/2.0521816jes

    Article  CAS  Google Scholar 

  15. Jiao S, Li T, Xiong C, Tang C, Dang A, Li H, Zhao T (2019) A facile method of preparing the asymmetric supercapacitor with two electrodes assembled on a sheet of filter paper. Nanomaterials 9:1338. https://doi.org/10.3390/nano9091338

    Article  CAS  PubMed Central  Google Scholar 

  16. Zhao X, Chen H, Wang S, Wu Q, Xia N, Kong F (2018) Electroless decoration of cellulose paper with nickel nanoparticles: a hybrid carbon fiber for supercapacitors. Mater Chem Phys 215:157–162. https://doi.org/10.1016/j.matchemphys.2018.05.024

    Article  CAS  Google Scholar 

  17. Chang B, Guo Y, Li Y, Yang B (2015) Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. RSC Adv 5:72019–72027. https://doi.org/10.1039/C5RA12651G

    Article  CAS  Google Scholar 

  18. Xiong C, Yang Q, Dang W, Li M, Li B, Su J, Liu Y, Zhao W, Duan C, Dai L, Xu Y, Ni Y (2020) Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. J Power Sources 447:227387. https://doi.org/10.1016/j.jpowsour.2019.227387

    Article  CAS  Google Scholar 

  19. Xiong C, Lin X, Liu H, Li M, Li B, Jiao S, Zhao W, Duan C, Dai L, Ni Y (2019) Fabrication of 3D expanded graphite-based (MnO 2 nanowalls and PANI nanofibers) hybrid as bifunctional material for high-performance supercapacitor and sensor. J Electrochem Soc 166:A3965–A3971. https://doi.org/10.1149/2.0181916jes

    Article  CAS  Google Scholar 

  20. Yu H, Ge X, Bulin C, Xing R, Li R, Xin G, Zhang B (2017) Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application. Electrochim Acta 253:239–247. https://doi.org/10.1016/j.electacta.2017.09.071

    Article  CAS  Google Scholar 

  21. Zhang X, Lin Q, Zhang X, Peng K (2018) A novel 3D conductive network-based polyaniline/graphitic mesoporous carbon composite electrode with excellent electrochemical performance. J Power Sources 401:278–286. https://doi.org/10.1016/j.jpowsour.2018.08.091

    Article  CAS  Google Scholar 

  22. Mao L, Guan C, Huang X, Ke Q, Zhang Y, Wang J (2016) 3D graphene-nickel hydroxide hydrogel electrode for high-performance supercapacitor. Electrochim Acta 196:653–660. https://doi.org/10.1016/j.electacta.2016.02.084

    Article  CAS  Google Scholar 

  23. Xu H, Liu J, Chen Y, Li CL, Tang J, Li Q (2017) Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J Mater Sci Mater Electron 28:10674–10683. https://doi.org/10.1007/s10854-017-6842-5

    Article  CAS  Google Scholar 

  24. Ajdari FB, Kowsari E, Ehsani A (2018) Ternary nanocomposites of conductive polymer/functionalized GO/MOFs: synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. J Solid State Chem 265:155–166. https://doi.org/10.1016/j.jssc.2018.05.038

    Article  CAS  Google Scholar 

  25. Htut KZ, Kim M, Lee E, Lee G, Baeck SH, Shim SE (2017) Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors. Synth Met 227:61–70. https://doi.org/10.1016/j.synthmet.2017.03.005

    Article  CAS  Google Scholar 

  26. Ke F, Liu Y, Xu H, Ma Y, Guang S, Zhang F, Lin N, Ye M, Lin Y, Liu X (2017) Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Compos Sci Technol 142:286–293. https://doi.org/10.1016/j.compscitech.2017.02.026

    Article  CAS  Google Scholar 

  27. Li K, Liu X, Chen S, Pan W, Zhang J (2019) A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J Energy Chem 32:166–173. https://doi.org/10.1016/j.jechem.2018.07.014

    Article  Google Scholar 

  28. Li T, Liu P, Gao Y, Diao S, Wang X, Yang B, Wang X (2019) High electrochemical performance of supercapacitor electrode with para-aminophenyl graphene/polyaniline cross-linking nanocomposites. Mater Lett 244:13–17. https://doi.org/10.1016/j.matlet.2019.02.046

    Article  CAS  Google Scholar 

  29. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  30. Liu A, Zhang H, Wang G, Zhang J, Zhang S (2018) Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density. Electrochim Acta 283:1401–1410. https://doi.org/10.1016/j.electacta.2018.07.099

    Article  CAS  Google Scholar 

  31. Islam N, Wang S, Warzywoda J, Fan Z (2018) Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. J Power Sources 400:277–283. https://doi.org/10.1016/j.jpowsour.2018.08.049

    Article  CAS  Google Scholar 

  32. Bai L, Wang P, Bose P, Li P, Zou R, Zhao Y (2015) Macroscopic architecture of charge transfer-induced molecular recognition from electron-rich polymer interpenetrated porous frameworks. ACS Appl Mater Interfaces 7:5056–5060. https://doi.org/10.1021/am5089549

    Article  CAS  PubMed  Google Scholar 

  33. Huang Z, Li L, Wang Y, Zhang C, Liu T (2018) Polyaniline/graphene nanocomposites towards high-performance supercapacitors: a review. Compos Commun 8:83–91. https://doi.org/10.1016/j.coco.2017.11.005

    Article  Google Scholar 

  34. Almeida DAL, Couto AB, Ferreira NG (2019) Flexible polyaniline/reduced graphene oxide/carbon fiber composites applied as electrodes for supercapacitors. J Alloys Compd 788:453–460. https://doi.org/10.1016/j.jallcom.2019.02.194

    Article  CAS  Google Scholar 

  35. Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 81:552–563. https://doi.org/10.1016/j.carbon.2014.09.090

    Article  CAS  Google Scholar 

  36. Zhang Q, Li Y, Feng Y, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim Acta 90:95–100. https://doi.org/10.1016/j.electacta.2012.11.035

    Article  CAS  Google Scholar 

  37. Kim M, Lee C, Jang J (2014) Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater 24:2489–2499. https://doi.org/10.1002/adfm.201303282

    Article  CAS  Google Scholar 

  38. Aranganathan V, Nityananda Shetty A (2018) Synthesis and characterization of reduced- graphene oxide/ nickel oxide/ polyaniline ternary nanocomposites for supercapacitors. Mater Today Proc 5:8852–8861. https://doi.org/10.1016/j.matpr.2017.12.317

    Article  CAS  Google Scholar 

  39. Hong X, Zhang B, Murphy E, Zou J, Kim F (2017) Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J Power Sources 343:60–66. https://doi.org/10.1016/j.jpowsour.2017.01.034

    Article  CAS  Google Scholar 

  40. Meng Y, Wang K, Zhang Y, Wei Z (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25:6985–6990. https://doi.org/10.1002/adma.201303529

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Li D, Li Z, Liu Z, Zhang Z (2017) Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes. Appl Surf Sci 422:339–347. https://doi.org/10.1016/j.apsusc.2017.06.046

    Article  CAS  Google Scholar 

  42. Chen Y, Zhang X, Xu C, Xu H (2019) The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites. Electrochim Acta 309:424–431. https://doi.org/10.1016/j.electacta.2019.04.072

    Article  CAS  Google Scholar 

  43. Pahovnik D, Žagar E, Kogej K, Vohlídal J, Žigon M (2013) Polyaniline nanostructures prepared in acidic aqueous solutions of ionic liquids acting as soft templates. Eur Polym J 49:1381–1390. https://doi.org/10.1016/j.eurpolymj.2013.02.019

    Article  CAS  Google Scholar 

  44. Nath AK, Kumar A (2013) Ionic liquid based polymer electrolyte dispersed with dedoped polyaniline nanorods. Solid State Ionics 253:8–17. https://doi.org/10.1016/j.ssi.2013.08.016

    Article  CAS  Google Scholar 

  45. Chen N, Ren Y, Kong P, Tan L, Feng H, Luo Y (2017) In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl Surf Sci 392:71–79. https://doi.org/10.1016/j.apsusc.2016.07.168

    Article  CAS  Google Scholar 

  46. Liu W, Wang S, Wu Q, Huan L, Zhang X, Yao C, Chen M (2016) Fabrication of ternary hierarchical nanofibers MnO2/PANI/CNT and theirs application in electrochemical supercapacitors. Chem Eng Sci 156:178–185. https://doi.org/10.1016/j.ces.2016.09.025

    Article  CAS  Google Scholar 

  47. Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81. https://doi.org/10.1016/j.jpowsour.2016.04.004

    Article  CAS  Google Scholar 

  48. El-Khodary SA, El-Enany GM, El-Okr M, Ibrahim M (2017) Modified iron doped polyaniline/sulfonated carbon nanotubes for all symmetric solid-state supercapacitor. Synth Met 233:41–51. https://doi.org/10.1016/j.synthmet.2017.09.002

    Article  CAS  Google Scholar 

  49. Liu H, Xu B, Jia M, Zhang M, Cao B, Zhao X, Wang Y (2015) Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl Surf Sci 332:40–46. https://doi.org/10.1016/j.apsusc.2015.01.129

    Article  CAS  Google Scholar 

  50. Chang T-W, Lin L-Y, Peng P-W, Zhang YX, Huang YY (2018) Enhanced electrocapacitive performance for the supercapacitor with tube-like polyaniline and graphene oxide composites. Electrochim Acta 259:348–354. https://doi.org/10.1016/j.electacta.2017.10.195

    Article  CAS  Google Scholar 

  51. Mitchell E, Candler J, De Souza F et al (2015) High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synth Met 199:214–218. https://doi.org/10.1016/j.synthmet.2014.11.028

    Article  CAS  Google Scholar 

  52. Wang G, Zhang Y, Zhou F, Sun Z, Huang F, Yu Y, Chen L, Pan M (2016) Simple and fast synthesis of polyaniline nanofibers/carbon paper composites as supercapacitor electrodes. J Energy Storage 7:99–103. https://doi.org/10.1016/j.est.2016.05.011

    Article  Google Scholar 

  53. Ghasem Hosseini M, Shahryari E (2017) A novel high-performance supercapacitor based on chitosan/graphene oxide-MWCNT/polyaniline. J Colloid Interface Sci 496:371–381. https://doi.org/10.1016/j.jcis.2017.02.027

    Article  CAS  PubMed  Google Scholar 

  54. Chee WK, Lim HN, Harrison I, Chong KF, Zainal Z, Ng CH, Huang NM (2015) Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim Acta 157:88–94. https://doi.org/10.1016/j.electacta.2015.01.080

    Article  CAS  Google Scholar 

  55. Nirmalesh Naveen A, Selladurai S (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods–PANI composite. Mater Sci Semicond Process 40:468–478. https://doi.org/10.1016/j.mssp.2015.07.025

    Article  CAS  Google Scholar 

  56. Mohd K, Quispe LT, Pla Cid CC et al (2017) The synthesis of highly corrugated graphene and its polyaniline composite for supercapacitors. New J Chem 41:4629–4636. https://doi.org/10.1039/C7NJ00024C

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (51763015, 51663014), the Program for Hongliu First-class Discipline Construction in Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xu or Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhu, Y., Zhang, M. et al. Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor. Ionics 26, 5199–5210 (2020). https://doi.org/10.1007/s11581-020-03672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03672-9

Keywords

Navigation