Skip to main content

Advertisement

Log in

Carbon fiber-bridged polyaniline/graphene paper electrode for a highly foldable all-solid-state supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple, scalable approach is developed to fabricate a flexible hybrid paper electrode composed of the polyaniline/graphene and the carbon fiber (CF)-reinforced bacterial cellulose. The prepared hybrid paper presents high areal capacitance of 4.145 F cm−2 at 5 mA cm−2 and an extremely low sheet resistance of 29.7 Ω sq.−1. The CF endows the paper electrode remarkable foldability with no mechanical destruction. Even after being repeatedly bent 180° up to 1000 times, the initial capacitance can be retained up to 98%. A fabricated all-solid-state supercapacitor based on the resulting paper electrode has an excellent areal capacitance of 630 mF cm−2 and energy density of 2.8 mWh cm−3. The results confirm that this approach can fabricate the highly foldable and shape-tailorable energy storage devices and may have wide potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao S, Sun Y, Lei F, Liang L, Liu J, Bi W, Pan B, Xie Y (2014) Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Ed 53(47):12789–12793

    Article  CAS  Google Scholar 

  2. Jiang L, Sheng L, Long C, Wei T, Fan Z (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater 5(15):1500771

    Article  CAS  Google Scholar 

  3. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562

    Article  CAS  PubMed  Google Scholar 

  4. Nam I, Kim G-P, Park S, Han JW, Yi J (2014) All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ Sci 7(3):1095–1102

    Article  CAS  Google Scholar 

  5. Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578

    Article  CAS  Google Scholar 

  6. Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74

    Article  CAS  Google Scholar 

  7. Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317

    Article  CAS  Google Scholar 

  8. Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:3412–3420

    Article  CAS  Google Scholar 

  9. Gao K, Shao Z, Wu X, Wang X, Zhang Y, Wang W, Wang F (2013) Based transparent flexible thin film supercapacitors. Nanoscale 5(12):5307–5311

    Article  CAS  PubMed  Google Scholar 

  10. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    Article  CAS  PubMed  Google Scholar 

  11. Lan W, Sun Y, Chen Y, Wang J, Tang G, Dou W, Su Q, Xie E (2015) Ultralight and flexible supercapacitor electrodes made from Ni(OH)2 nanosheets doped with Ag nanoparticle/3D graphene composite. RSC Adv 5(27):20878–20883

    Article  CAS  Google Scholar 

  12. Kalambate PK, Dar RA, Karna SP, Srivastava AK (2015) High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sources 276:262–270

    Article  CAS  Google Scholar 

  13. Gui Z, Zhu H, Gillette E, Han X, Rubloff GW, Hu L, Lee SB (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037–6046

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Xie F, Wu Z, Huang T, Wu J, Yan D, Huang C, Li L (2018) Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim Acta 259:968–974

    Article  CAS  Google Scholar 

  15. Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:867–872

    Google Scholar 

  16. Schnepp Z (2013) Biopolymers as a flexible resource for nanochemistry. Angew Chem Int Ed 52(4):1096–1108

    Article  CAS  Google Scholar 

  17. Chen L-F, Huang Z-H, Liang H-W, Yao W-T, Yu Z-Y, Yu S-H (2013) Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci 6(11):3331–3338

    Article  CAS  Google Scholar 

  18. Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2016) Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Adv 6(109):107426–107432

    Article  CAS  Google Scholar 

  19. Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2017) A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem 41(2):857–864

    Article  CAS  Google Scholar 

  20. Wang Z, Tammela P, Strømme M, Nyholm L (2015) Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8):3418–3423

    Article  CAS  PubMed  Google Scholar 

  21. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26(28):4855–4862

    Article  CAS  PubMed  Google Scholar 

  22. Ma L, Liu R, Liu L, Wang F, Niu H, Huang Y (2016) Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. J Power Sources 335:76–83

    Article  CAS  Google Scholar 

  23. Liu D, Wang H, Du P, Wei W, Wang Q, Liu P (2018) Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim Acta 259:161–169

    Article  CAS  Google Scholar 

  24. Hu R, Zhao J, Zhu G, Zheng J (2018) Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim Acta 261:151–159

    Article  CAS  Google Scholar 

  25. Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23(6):3987–3997

    Article  CAS  Google Scholar 

  26. Lyu S, Chang H, Fu F, Hu L, Huang J, Wang S (2016) Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. J Power Sources 327:438–446

    Article  CAS  Google Scholar 

  27. Xie Y, Liu Y, Zhao Y, Tsang YH, Lau SP, Huang H, Chai Y (2014) Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J Mater Chem A 2(24):9142–9149

    Article  CAS  Google Scholar 

  28. Su H, Zhu P, Zhang L, Zeng W, Zhou F, Li T, Wang Q, Sun R, Wong C (2016) Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Adv 6(87):83564–83572

    Article  CAS  Google Scholar 

  29. Chien H-H, Liao C-Y, Hao Y-C, Hsu C-C, Cheng I-C, Yu S, Chen J-Z (2018) Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth. Electrochim Acta 260:391–399

    Article  CAS  Google Scholar 

  30. Zheng X, Yu H, Xing R, Ge X, Sun H, Li R, Zhang Q (2018) Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochim Acta 260:504–513

    Article  CAS  Google Scholar 

  31. Song N, Jia J, Wang W, Gao Y, Zhao Y, Chen Y (2016) Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem Eng J 298:198–205

    Article  CAS  Google Scholar 

  32. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  PubMed  Google Scholar 

  33. Otero T, Boyano I (2003) Potentiostatic oxidation of polyaniline under conformational relaxation control: experimental and theoretical study. J Phys Chem B 107(18):4269–4276

    Article  CAS  Google Scholar 

  34. Feng J-X, Ye S-H, Lu X-F, Tong Y-X, Li G-R (2015) Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl Mater Interfaces 7(21):11444–11451

    Article  CAS  PubMed  Google Scholar 

  35. Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5(8):3819–3831

    Article  CAS  Google Scholar 

  36. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476

    Article  CAS  Google Scholar 

  37. Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206

    Article  CAS  PubMed  Google Scholar 

  38. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Instrumental Analysis Center of SJTU for SEM measurements.

Funding

This study was financially supported by the National Natural Science Foundation of China (Grants No. 21576165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Photographs of PANI/G/CF-BC paper, bending PANI/G/CF-BC paper, PANI/G/CF-BC paper tailed into a butterfly shape and five-pointed star shape. Sheet resistances of the composite paper with different mass loading. Sheet resistances of the composite paper with different CF content. Sheet resistances of the composite paper with different graphene content.

ESM 1

(DOCX 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Tan, H. & Zhao, Y. Carbon fiber-bridged polyaniline/graphene paper electrode for a highly foldable all-solid-state supercapacitor. J Solid State Electrochem 23, 9–17 (2019). https://doi.org/10.1007/s10008-018-4109-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4109-6

Keywords

Navigation