Skip to main content
Log in

Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional nitrogen-doped graphene/polyaniline hydrogels (RGNP) was synthesized by facile hydrothermal method with graphene oxide (GO) and polyaniline nanorods (PANI-NRs), and urea as the reducing agent and nitrogen source. The structures and morphologies of the composites were characterized by various techniques, and electrochemical properties were also investigated. X-ray photoelectron spectroscopy (XPS) demonstrated nitrogen atom was doped into graphene and scanning electron microscopy (SEM) indicated PANI-NRs fully inset into the three-dimensional graphene layers. The RGNP composite electrode exhibited the significantly improved electrochemical performances compared to the undoped equivalents or the separate components. The specific capacitance is up to 589.3 Fg−1 at current density of 3 mA cm−2 in 1 M H2SO4 electrolyte, which also displays superior pseudocapacitive cycling stability (retention of 80.5% after 500 cycles). In addition, good capacitance retention rate (80.2% at 30 mA cm−2) has been achieved. These results indicate that the RGNP composite electrode can be applied for high performance supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    Article  Google Scholar 

  2. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  3. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D a periodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 120, 379–382 (2008)

    Article  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  6. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and application of polyaniline. Prog. Polym. Sci. 34, 783–810 (2009)

    Article  Google Scholar 

  7. A.S. Roy, K.R. Anilkumar, M.V.N.A. Prasad, Studies of AC conductivity and dielectric relaxation behavior of CdO-doped nanometric polyaniline. J. Appl. Polym. Sci. 123, 1928–1934 (2012)

    Article  Google Scholar 

  8. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  Google Scholar 

  9. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010)

    Article  Google Scholar 

  10. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  Google Scholar 

  11. Y.X. Xu, X.Q. Huang, Z.Y. Lin, X. Zhong, Y. Huang, X.F. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 6, 65–76 (2013)

    Article  Google Scholar 

  12. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  Google Scholar 

  13. M.X.F. Yang, Sh.J. Bao, H. Wei, H. Chai, Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim. Acta 137, 381–387 (2014)

    Article  Google Scholar 

  14. N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J. Mater. Sci. 27, 6249–6257 (2016)

    Google Scholar 

  15. Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  Google Scholar 

  16. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.H. Xia, Catalyst-free synthesis of nitrogen doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011)

    Article  Google Scholar 

  17. P. Chen, T.Y. Xiao, H.H. Li, J.J. Yang, Z. Wang, H.B. Yao, S.H. Yu, Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 6, 712–719 (2012)

    Article  Google Scholar 

  18. D. Li, R.B. Kaner, Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 128, 968–975 (2006)

    Article  Google Scholar 

  19. C. Long, L. Jiang, T. Wei, J. Yan, Z. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A 2, 16678–16686 (2014)

    Article  Google Scholar 

  20. S. Mao, G.H. Lu, J.H. Chen, Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015)

    Article  Google Scholar 

  21. Z.-J. Lu, M.-W. Xu, S.-J. Bao, K. Tan, H. Chai, C.-J. Cai, C.-C. Ji, Q. Zhang, Facile preparation of nitrogen-doped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction. J. Mater. Sci. 48, 8101–8107 (2013)

    Article  Google Scholar 

  22. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang et al., Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    Article  Google Scholar 

  23. H. Fan, H. Wang, N. Zhao, X. Zhang, J. Xu, Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J. Mater. Chem. 22, 2774–2780 (2012)

    Article  Google Scholar 

  24. N.L. Chen, Y.P. Ren, P.P. Kong, L. Tan, H.X. Feng, Y.Ch. Luo, In situ one-pot preparation of reduced graphene oxide/polyanilinecomposite for high-performance electrochemical capacitors. Appl. Surf. Sci. 392, 71–79 (2017)

    Article  Google Scholar 

  25. C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46, 1994–1998 (2008)

    Article  Google Scholar 

  26. A.S. Roy, K.R. Anilkumar, M.V.N.A. Prasad, Core-shell method of synthesis, characterizations, and AC conductivity studies of polyaniline/n-TiO2 composites. J. Appl. Polym. Sci. 121, 675–680 (2011)

    Article  Google Scholar 

  27. A. Roy, A. Parveen, R. Deshpande, R. Bhat, A. Koppalkar, Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites. J. Nanoparticle Res. 15, 1337 (2013)

    Article  Google Scholar 

  28. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaicdevices based on a novel acceptor material: graphene. Adv. Mater. 20, 3924–3930 (2008)

    Article  Google Scholar 

  29. J.W. Luo, W.B. Zhong, Y.B. Zou, C.L. Xiong, W.T. Yang, Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J. Power Sources 319, 73–81 (2016)

    Article  Google Scholar 

  30. Y.H. Jin, M. Fang, M.Q. Jia, In situ one-pot synthesis of graphene-polyaniline nanofiber composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 308, 333–340 (2014)

    Article  Google Scholar 

  31. S. Biniak, G. Szymaski, J. Siedlewski, A. Swiatkowski, The characterization of activited carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997)

    Article  Google Scholar 

  32. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350–4358 (2011)

    Article  Google Scholar 

  33. K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010)

    Article  Google Scholar 

  34. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, J.M. Jimenez-Mateos, Origin of the large N 1 s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118, 8071–8076 (1996)

    Article  Google Scholar 

  35. L. Sun, L. Wang, C.G. Tian, T.X. Tan, Y. Xie, K.Y. Shi, M.T. Li, H.G. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea fou superior capacitive enegy storage. RSC Adv. 2, 4498–4506 (2012)

    Article  Google Scholar 

  36. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011)

    Article  Google Scholar 

  37. Y. Li, X. Zhao, Q. Xu, Q. Zhang, D. Chen, Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27, 6458–6463 (2011)

    Article  Google Scholar 

  38. X.J. Li, W. Xing, J. Zhou, G.Q. Wang, S.P. Zhuo, Z.F. Yan, Q.Z. Xue, S.Z. Qiao, Excellent capacitive performance of three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. Chem. Eur. J. 20, 13314–13320 (2014)

    Article  Google Scholar 

  39. Q.F. Wang, Y. Huang, J. Miao, Y. Zhao, W. Zhang, Y. Wang, Graphene-supported Ce–SnS2 nanocomposite as anode material for lithium-ionbatteries. J. Am. Ceram. Soc. 96, 2190–2196 (2013)

    Article  Google Scholar 

  40. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  Google Scholar 

  41. D.C. Marcano, D.V. Kosybkin, J.M. Berlin, A. Ainitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (51503092, 51663014), the Foundation of Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CMAR-04) and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, J., Chen, Y. et al. Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications. J Mater Sci: Mater Electron 28, 10674–10683 (2017). https://doi.org/10.1007/s10854-017-6842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6842-5

Keywords

Navigation