Skip to main content
Log in

A simple, economical, and quick electrochemical deposition of rare-earth metal ion–doped ZnSe/FeS2 double-layer thin films with enhanced photoelectrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, various rare-earth metal (Eu, Gd, and Sm) ion-doped ZnSe/FeS2 double-layer thin films were deposited on an ITO plate via a quick and facile electrochemical deposition (ECD) method. X-ray diffraction (XRD) studies confirmed that the fabricated double-layer thin films exhibited sharp diffraction peaks which indicate their well crystalline nature. Scanning electron microscopy (SEM) showed that the double layer of ZnSe/FeS2 films was well deposited on the ITO substrate. The electron paramagnetic resonance (EPR) spectra indicated one weaker peak center at 335 mT and one high-instance very sharp peak center around 157 mT for the different metal-doped ZnSe/FeS2 double-layer thin films. From the Raman spectra, it was found that a broad peak centered at 2778 cm−1, which revealed the characteristic vibration of the ZnSe/FeS2 double layer. Electrochemical impedance spectroscopy (EIS) suggested that the Gd3+-doped ZnSe/FeS2 sample possesses a lower charge transfer resistance (Rct) of 39 Ω when compared with Eu3+- and Sm3+-doped ZnSe/FeS2 samples, demonstrating the excellent conductivity of Gd3+-doped ZnSe/FeS2 films. Moreover, the photoelectrochemical study indicates that the Gd3+-doped ZnSe/FeS2 thin film displayed a higher photocurrent than the other samples. This higher photocurrent of Gd3+-doped ZnSe/FeS2 films is mainly owing to its efficient charge separation efficiency to produce more photo-excited electron-hole pairs. Therefore, the attained Gd3+-doped ZnSe/FeS2 double-layer thin film is a promising material for photoelectrochemical device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Olgar MA, Atasoy Y, Basol BM, Tomakin M, Aygun G, Ozyuzer L, Bacaksız E (2016) Influence of copper composition and reaction temperature on the properties of CZTSe thin films. J Alloys Compd 682:610–617

    Article  CAS  Google Scholar 

  2. Huang F, Hou J, Wang H, Tang H, Liu Z, Zhang L, Zhanga Q, Penga S, Liu J, Caoa G (2017) Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32:433–440

    Article  CAS  Google Scholar 

  3. Wang B, Liu T, Xia C, Zhou F, He F, Liu R, Hu Y, Wang H (2014) The structure and photovoltaic properties of double-shell TiO2/ZnSe/CdSe nanocable arrays synthesized by using TiO2/ZnO nanocables template. Mater Res Bull 59:234–240

    Article  CAS  Google Scholar 

  4. Hao H, Yao X, Wang M (2007) Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol–gel in situ crystallization method. Opt Mater 29:573–577

    Article  CAS  Google Scholar 

  5. Nasieka I, Boyko M, Strelchuk V, Kovalenko N, Gerasimenko A, Starzhinskiy N, Zhukov A, Zenya I, Sofronov D (2014) Optical characterization of Er-doped ZnSe for scintillation applications. Opt Mater 38:272–277

    Article  CAS  Google Scholar 

  6. Peng Z, Liu Y, Zhao Y, Chen K, Cheng Y, Kovalev V, Chen W (2014) ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells. J Alloys Compd 587:613–617

    Article  CAS  Google Scholar 

  7. Lohar GM, Jadhav ST, Takale MV, Patil RA, Ma YR, Rath MC, Fulari VJ (2015) Photoelectrochemical cell studies of Fe2+ doped ZnSe nanorods using the potentiostatic mode of electrodeposition. J Colloid Interface Sci 458:136–146

    Article  CAS  Google Scholar 

  8. Kwon M, Nam D, Cheong H, Jeon C (2016) Effect of cu/(Zn+Sn) ratio on the ZnSe position and performance of CZTSe solar cells. J Alloys Compd 665:304–310

    Article  CAS  Google Scholar 

  9. Kim S, Kim KM, Tampo H, Shibata H, Matsubara K, Niki S (2016) Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%. Sol Energy Mater Sol Cells 144:488–492

    Article  CAS  Google Scholar 

  10. Rajesh Kumar T, Prabukanthan P, Harichandran G, Theerthagiri J, Tatarchuk T, Maiyalagan T, Maia G, Bououdina M (2017) Physicochemical and electrochemical properties of Gd3+-doped ZnSe thin films fabricated by single-step electrochemical deposition process. J Solid State Electrochem 22:1197–1207

    Article  Google Scholar 

  11. Rajesh Kumar T, Prabukanthan P, Harichandran G, Theerthagiri J, Meera Moydeen A, Durai G, Kuppusami P, Tatarchuk T (2018) Comparative study of structural, optical and electrical properties of electrochemically deposited Eu, Sm and Gd doped ZnSe thin films. J Mater Sci Mater Electron 29:5638–5648

    Article  Google Scholar 

  12. Prabukanthan P, Rajesh Kumar T, Harichandran G (2015) Effect of Sm3+ on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films. Mater Res Express 2:096102

    Article  Google Scholar 

  13. Lee SH, Jung C, Jun Y, Kim SW (2015) Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application. Opt Mater 49:230–234

    Article  CAS  Google Scholar 

  14. Akram MA, Javed S, Islam M, Mujahid M, Safdar A (2016) Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells. Sol Energy Mater Sol Cells 146:121–128

    Article  Google Scholar 

  15. Chena W, Chen C, Tunuguntla V, Lu SH, Su C, Lee C, Chena K, Chen L (2016) Enhanced solar cell performance of Cu2ZnSn(S,se)4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy 30:762–770

    Article  Google Scholar 

  16. Divyasree MC, Shiju E, Vijisha MV, Ramesan MT, Chandrasekharan K (2018) Phenomenal enhancement of optical nonlinearity in PTZ-I based ZnS/ZnSe nanocomposites. Opt Mater 79:72–77

    Article  CAS  Google Scholar 

  17. Li J, Kim SY, Nam D, Liu X, Kim J, Cheong H, Liu W, Li H, Sun Y, Zhanga Y (2017) Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells. Sol Energy Mater Sol Cells 159:447–455

    Article  CAS  Google Scholar 

  18. Tu RC, Su YK, Huang YS, Chien FR (1999) Structural and optical properties of high-quality ZnTe grown on GaAs using ZnSe/ZnTe strained-layers superlattices buffer layer. J Cryst Growth 201/202:506–509

    Article  CAS  Google Scholar 

  19. Khadka DB, Kim SY, Kim J (2015) Band gap engineering of alloyed Cu2ZnGexSn1–xQ4 (Q=S,Se) films for solar cell. J Phys Chem C 119:1706–1713

    Article  CAS  Google Scholar 

  20. Hewa-Kasakarage NN, El-Khoury PZ, Tarnovsky AN, Kirsanov M, Nemitz I, Nemchinov A, Zamkov M (2010) Ultrafast carrier dynamics in type II ZnSe/CdSe/ZnSe nanobarbells. J ACS Nano 4:1837–1844

    Article  CAS  Google Scholar 

  21. Prabukanthan P, Lakshmi R, Harichandran G, Tatarchuk T (2018) Photovoltaic device performance of pure, manganese (Mn2+) doped and irradiated CuISe2 thin films. New J Chem 42:11642–11652

    Article  CAS  Google Scholar 

  22. Yahaba T, Kaida S, Koshimizu M, Fujimoto Y, Asai K (2016) Optical characterization of ZnSe/CdSe nanocrystals with p-conjugated organic ligands. Opt Mater 61:77–81

    Article  CAS  Google Scholar 

  23. Valdes M, Hernandez-Martinez A, Sanchez Y, Oliva F, Izquierdo-Roca V, Perez Rodriguez A, Saucedo E (2018) Cu2ZnSnSe4 based solar cells combining co-electrodeposition and rapid thermal processing. Sol Energy 173:955–963

    Article  CAS  Google Scholar 

  24. Fard ZA, Dehghani H (2019) Investigation of the effect of Sr-doped in ZnSe layers to improve photovoltaic characteristics of ZnSe/CdS/CdSe/ZnSe quantum dot sensitized solar cells. Sol Energy 184:378–390

    Article  Google Scholar 

  25. Zhang H, Fang Y (2018) Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloy Compd 781:201–208

    Article  Google Scholar 

  26. Wang C, Xu S, Wang Y, Wang Z, Cui Y (2014) Aqueous synthesis of multilayer Mn:ZnSe/cu:ZnS quantum dots with white light emission. J Mater Chem C 2:660–666

    Article  CAS  Google Scholar 

  27. Prabukanthan P, Harichandran G (2014) Electrochemical deposition of n-type ZnSe thin films buffer layer for solar cells. J Electrochem Soc 161:D736–D741

    Article  CAS  Google Scholar 

  28. Prabukanthan P, Thamaraiselvi S, Harichandran G (2017) Single-step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells. J Electrochem Soc 164:D581–D589

    Article  CAS  Google Scholar 

  29. Lohar GM, Shinde SK, Rath MC, Fulari VJ (2014) Structural, optical, photoluminescence, electrochemical, and photoelectrochemical properties of Fe doped ZnSe hexagonal nanorods. Mater Sci Semicond Process 26:548–554

    Article  CAS  Google Scholar 

  30. Bhandari KP, Roland PJ, Kinner T, Cao Y, Choi H, Jeong S, Ellingson RJ (2015) Analysis and characterizations of iron pyrite nanocrystals and nanocrystalline thin films derived from bromide anion synthesis. J Mater Chem A 3:6853–6861

    Article  CAS  Google Scholar 

  31. Prabukanthan P, Thamaraiselvi S, Harichandran G, Theerthagiri J (2019) Single-step electrochemical deposition of Mn2+ doped FeS2 thin films on ITO conducting glass substrate: physical, electrochemical and electrocatalytic properties. J Mater Sci Mater Electron 30:3268–3276

    Article  CAS  Google Scholar 

  32. Khan TM, Zakria M, Ahmad M, Shakoor IR (2014) Optoelectronic study and annealing stability of room temperature pulsed layer ablated ZnSe polycrystalline thin films. J Lumin 147:97–106

    Article  CAS  Google Scholar 

  33. Yadav K, Jaggi N (2015) Effect of ag doping on structural and optical properties of ZnSe nanophosphors. Mater Sci Semicond Process 30:376–380

    Article  CAS  Google Scholar 

  34. De Moraes AR, Mosca DH, Schreiner WH, Mattoso N, Silveira E (2002) Structural and chemical properties of ZnSe-Fe electrodeposited granular films. Braz J Phys 32:2A

    Article  Google Scholar 

  35. Rajesh Kumar T, Prabukanthan P, Harichandran G, Theerthagiri J, Chandrasekaran S, Madhavan J (2017) Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films. Ionics 23:2497–2507

    Article  CAS  Google Scholar 

  36. Wang Q, Moser J, Gratzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  CAS  Google Scholar 

  37. Zhang J, Qiao ZS, Qi L, Yu J (2013) Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys 15:12088–12094

    Article  CAS  Google Scholar 

  38. Jia L, Kou H, Jiang Y, Yu S, Li J, Wang C (2013) Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties. Electrochim Acta 107:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. P. Prabukanthan would like to acknowledge the financial support of SERB-DST, Fast Track Research Scheme, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabukanthan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.R., Prabukanthan, P., Harichandran, G. et al. A simple, economical, and quick electrochemical deposition of rare-earth metal ion–doped ZnSe/FeS2 double-layer thin films with enhanced photoelectrochemical performance. Ionics 25, 6115–6122 (2019). https://doi.org/10.1007/s11581-019-03121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03121-2

Keywords

Navigation