Skip to main content
Log in

Single-step electrochemical deposition of Mn2+ doped FeS2 thin films on ITO conducting glass substrates: physical, electrochemical and electrocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn2+ doped FeS2 thin films were deposited on ITO coated conducting glass substrate at 50 °C in an aqueous medium by simple electrochemical deposition technique. The structural and phase purity of the Mn2+ doped FeS2 thin films were investigated using XRD technique. The XRD analysis revelaed that the fabricated thin films were cubic structure along with the (200) plane preferential orientation. The diffraction peak slightly shifted towards lower 2θ values which confirmed that doping of Mn ions into FeS2 host matrixes. The calculated band gap energy of Mn2+ doped FeS2 thin films showed a red shift of absorption edge compared to undoped FeS2 thin film. EIS indicated that Mn2+ doped FeS2 thin films showed lower charge transfer resistance with better conductivity nature compared to undoped sample. Moreover, the photo electrochemical measurements carried out for the optimized Mn2+ doped FeS2 thin film which revealed the faster migration of photo-induced charge-carriers. Electro catalytic activity of Mn-doped FeS2 thin films were studied for the redox reaction of iodide/triiodide (I/I3) by using cyclic voltammetry measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Khalid, M.A. Malik, D.J. Lewis, P. Kevin, E. Ahmed, Y. Khan, P. O’Brien, Transition metal doped pyrite (FeS2) thin films: structural properties and evaluation of optical band gap energies. J. Mater. Chem. C 3, 12068–12076 (2015). https://doi.org/10.1039/C5TC03275J

    Article  Google Scholar 

  2. P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Single step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells. J. Electrochem. Soc. 164, D581–D589 (2017). https://doi.org/10.1149/2.0991709jes

    Article  Google Scholar 

  3. M. Gong, A. Kirkeminde, S. Ren, Symmetry-defying iron pyrite (FeS2) nanocrystals through oriented attachment. Sci. Rep. 3, 1–6 (2013). https://doi.org/10.1038/srep02092

    Google Scholar 

  4. S. Bae, D. Kim, W. Lee, Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl. Catal. B 134–135, 93–102 (2013). https://doi.org/10.1016/j.apcatb.2012.12.031

    Article  Google Scholar 

  5. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  Google Scholar 

  6. J. Xia, J.Q. Jiao, B.L. Dai, W.D. Qiu, S.X. He, W.T. Qiu, P.K. Shen, L.P. Chen, Fecile synthesis of FeS2 nanocrystals and their magnetic and electrochemical properties. RSC Adv. 3, 6132–6140 (2013). https://doi.org/10.1039/C3RA22405H

    Article  Google Scholar 

  7. S. Shukla, W. Joel, Q. Ager, T. Xiong, Sritharan, Scientific and technological assessment of iron pyrite for use in solar devices. Energy Technol. 6, 8–20 (2018). https://doi.org/10.1002/ente.201700638

    Article  Google Scholar 

  8. M.G. Gong, A. Kirkeminde, N. Kumar, H. Zhao, S.Q. Ren, Ionic-passivated FeS2 photocapacitors for energy coversion and storage. Chem. Commun. 49, 9260–9262 (2013). https://doi.org/10.1039/C3CC45088K

    Article  Google Scholar 

  9. S.L. Liu, M.M. Li, S. Li, H.L. Li, L. Yan, Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Appl. Surf. Sci. 268, 213–217 (2013). https://doi.org/10.1016/j.apsusc.2012.12.061

    Article  Google Scholar 

  10. E.J. Kim, B. Batchelor, Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Mater. Res. Bull. 44, 1553–1558 (2009). https://doi.org/10.1016/j.materresbull.2009.02.006

    Article  Google Scholar 

  11. G. Chatzitheodrou, S. Fiechter, M. Kunst, W. Jaegermann, H. Tributsch, Thin photoactive FeS2 (pyrite) films. Mater. Res. Bull. 21, 1481–1487 (1986). https://doi.org/10.1016/0025-5408(86)90088-7

    Article  Google Scholar 

  12. R.J. Soukup, P. Prabukanthan, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011). https://doi.org/10.1116/1.3517739

    Article  Google Scholar 

  13. D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter, H. Tributsch, Structural, optical and electrical properties of polycrystalline iron pyrite layers deposited by reactive d.c. magnetron sputtering. Thin Solid Films 246, 6–12 (1994). https://doi.org/10.1016/0040-6090(94)90723-4

    Article  Google Scholar 

  14. Q. Yu, S. Cai, Z. Jin, Z. Yan, Evolutions of composition, microstructure and optical properties of Mn doped pyrite (FeS2) films prepared by chemical bath deposition. Mater. Res. Bull. 48, 3601–3606 (2013). https://doi.org/10.1016/j.materresbull.2013.05.074

    Article  Google Scholar 

  15. S.D. Disale, S.S. Garje, Deposition of copper doped iron sulfide (CuxFe1–xS) thin films using aerosol-assisted chemical vapor deposition technique. Appl. Organomet. Chem. 24, 734–740 (2010). https://doi.org/10.1002/aoc.1676

    Article  Google Scholar 

  16. S. Nakamura, A. Yamamoto, Electrcodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 65, 79–85 (2001). https://doi.org/10.1016/S0927-0248(00)00080-5

    Article  Google Scholar 

  17. N. Arbi, I. Ben Assaker, M. Gannouni, A. Kriaa, R. Chtourou, Effect of manganese concentration on physical and electrochemical properties of Mn2+ doped ZnS thin films deposited onto ITO-(glass) substrates by electordeposition techniques. J. Mater. Sci.: Mater. Electron. 28, 4997–5005 (2017). https://doi.org/10.1007/s10854-016-6155-0

    Google Scholar 

  18. Q. Fu, J. Chen, C. Shi, D. Ma, Room-temperature sol–gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. ACS Appl. Mater. Interfaces 5, 6024–6029 (2013). https://doi.org/10.1021/am4007319

    Article  Google Scholar 

  19. F. Martinez-Rojas, M. Hssein, Z. El Jouad, F. Armijo, L. Cattin, G. Louarn, N. Stephant, M.A. del Valle, M. Addou, J.P. Soto, J.C. Bernede, Mo(SxOy) thin films deposited by electrochemistry for application in organic photovoltaic cells. Mater. Chem. Phys. 201, 331–338 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.021

    Article  Google Scholar 

  20. P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. .Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau, Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties. In Proceedings of the 35th Photovoltaics specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), pp. 002965–002969 (2010). https://doi.org/10.1109/PVSC.2010.5614465

  21. P. Prabukanthan, G. Harichandran, Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J. Electrochem. Soc. 14, D736–D741 (2014). https://doi.org/10.1149/2.0261414jes

    Article  Google Scholar 

  22. P. Prabukanthan, R. Dhanasekaran, Growth of CuGaS2 single crystals by chemical vapor Transport and characterization. Cryst. Growth Des. 7, 618–623 (2007) https://doi.org/10.1021/cg060450o

    Article  Google Scholar 

  23. P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci.: Mater. Electron. 29, 11951–11963 (2018). https://doi.org/10.1007/s10854-018-9297-4

    Google Scholar 

  24. B. Silwana, C. van der Horst, E. Iwuoha, V. Somerset, Synthesis, characterization and electrochemical evaluation of reduced grapheme oxide modified antimony nanoparticles. Thin Solid Films 592, 124 – 134 (2015). https://doi.org/10.1016/j.tsf.2015.09.010

    Article  Google Scholar 

  25. P. Prabukanthan, R. Lakshmi, G. Harichandran, T. Tatarchuk, Photovoltaic device performance of pure, manganese (Mn2+) doped and irradiated CuInSe2 thin films. New J. Chem. 42, 11642–11652 (2018). https://doi.org/10.1039/C8NJ01056K

    Article  Google Scholar 

  26. Z. Li, F. Gong, G. Zhou, Z.S. Wang, NiS2/reduced grapheme oxide nanocomposites for efficient dye-sensitized solar cells. J. Phys. Chem. C 117, 6561–6566 (2013). https://doi.org/10.1021/jp401032c

    Article  Google Scholar 

  27. X. Zuo, R. Zhang, B. Yang, G. Li, H. Tang, H. Zhang, M. Wu, Y. Ma, S. Jin, K. Zhu, NiS nanoparticles anchored on reduced grapheme oxide to enhance the performance of dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 8176–8181 (2015). https://doi.org/10.1007/s10854-015-3478-1

    Google Scholar 

Download references

Acknowledgements

One of the authors (P. Prabukanthan) wishes to acknowledge University Grant Commission (UGC), India, for the financial assistance through major research project (MRP) scheme [File No. 43-399/2014(SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabukanthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabukanthan, P., Thamaraiselvi, S., Harichandran, G. et al. Single-step electrochemical deposition of Mn2+ doped FeS2 thin films on ITO conducting glass substrates: physical, electrochemical and electrocatalytic properties. J Mater Sci: Mater Electron 30, 3268–3276 (2019). https://doi.org/10.1007/s10854-018-00599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00599-w

Navigation