Skip to main content
Log in

Physicochemical and electrochemical properties of Gd3+-doped ZnSe thin films fabricated by single-step electrochemical deposition process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gd3+ (gadolinium)-doped ZnSe thin films (1 to 5 mol%) are grown onto indium-doped tin oxide (ITO) glass substrate by single-step electrochemical deposition process. X-ray diffraction analysis confirms the formation of hexagonal wurtzite structure with preferred growth orientation along (101) plane. A new antistructural modeling for describing active surface centers for ZnSe:Gd system is discussed for the first time. The new antistructural modeling shows that the dissolution of Gd cations increases the concentration of surface active centers \( {\mathrm{Gd}}_{\mathrm{Zn}}^{\bullet } \) and \( {\mathrm{V}}_{\mathrm{Zn}}^{\prime \prime } \), which are located in the cationic sublattice. The surface morphology of thin films investigated using scanning electron microscopy reveals some agglomeration of grains with significant changes in particle size with varying Gd3+ concentrations. UV-vis and photoluminescence studies indicate a blue shift due to the incorporation of Gd3+ into ZnSe host lattice. Electrochemical impedance spectroscopy and photoelectrochemical measurements reveal that the 3 mol% Gd3+-doped ZnSe thin film possesses low charge transfer resistance (25.42 Ω) and faster migration of photoinduced electrons, resulting in high conductivity. Therefore, the optimum doping concentration, 3 mol% Gd3+-doped ZnSe, offers a positive synergistic effect for photoelectrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xie R, Li Y, Zhang X, Liu H (2015) Low-cost environmentally friendly synthesis, structural and spectroscopic properties of Fe:ZnSe colloidal nanocrystals. J Alloys Compd 621:396–403. https://doi.org/10.1016/j.jallcom.2014.09.217

    Article  CAS  Google Scholar 

  2. Yadav K, Jaggi N (2015) Effect of Ag doping on structural and optical properties of ZnSe nanophosphors. Mater Sci Semicond Process 30:376–380. https://doi.org/10.1016/j.mssp.2014.09.044

    Article  CAS  Google Scholar 

  3. Prabukanthan P, Harichandran G (2014) Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J Electrochem Soc 14:D736–D741. https://doi.org/10.1149/2.0261414jes

  4. Poornaprakash B, Chalapathi U, Reddeppa M, Park SH (2016) Effect of Gd doping on the structural, luminescence and magnetic properties of ZnS nanoparticles synthesized by the hydrothermal method. Superlattice Microst 97:104–109. https://doi.org/10.1016/j.spmi.2016.06.013

    Article  CAS  Google Scholar 

  5. Prabukanthan P, Rajesh Kumar T, Harichandran G (2017) Influence of various complexing agents on structural, morphological, optical and electrical properties of electrochemically deposited ZnSe thin films. J Mater Sci Mater Electron 28(19):14728–14737. https://doi.org/10.1007/s10854-017-7341-4

    Article  CAS  Google Scholar 

  6. Boulon G (2012) Fifty years of advances in solid-state laser materials. Opt Mater 34(3):499–512. https://doi.org/10.1016/j.optmat.2011.04.018

    Article  CAS  Google Scholar 

  7. Rajesh Kumar T, Prabukanthan P, Harichandran G, Theerthagiri J, Chandrasekaran S, Madhavan J (2017) Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films. Ionics 23(9):2497–2507. https://doi.org/10.1007/s11581-017-2090-1

    Article  CAS  Google Scholar 

  8. Colibaba GV, Goncearenco EP, Nedeoglo DD, Nedeoglo ND (2015) Infrared photoluminescence of ZnSe:Gd crystals. J Lumin 158:451–455. https://doi.org/10.1016/j.jlumin.2014.10.048

    Article  CAS  Google Scholar 

  9. Nasieka IU, Boyko M, Strelchuk V, Kovalenko N, Gerasimenko A, Starzhinskiy N, Zhukov A, Zenya I, Sofronov D (2014) Optical characterization of Er-doped ZnSe for scintillation applications. Opt Mater 38:272–277. https://doi.org/10.1016/j.optmat.2014.10.052

    Article  CAS  Google Scholar 

  10. Jonker BT, Peterson LD, Krebs JJ (1993) Growth and characterization of a new diluted magnetic semiconductor, Zn1-x Eu xSe. J Appl Phys 73(10):5742–5744. https://doi.org/10.1063/1.353610

    Article  CAS  Google Scholar 

  11. Sadowski J, Dynowska E, Szamota-Sadowska K, Przedpelski W, Sitarek P, Swiarek K (1996) Properties of MBE grown CdYbTe and ZnYbTe on GaAs (100) substrates. J Cryst Growth 159(1-4):1075–1079. https://doi.org/10.1016/0022-0248(95)00841-1

    Article  CAS  Google Scholar 

  12. Lohar GM, Jadhav ST, Takale MV, Patil RA, Mab YR, Rath MC, Fulari VJ (2015) Photoelectrochemical cell studies of Fe2+ doped ZnSe nanorods using the potentiostatic mode of electrodeposition. J Colloid Interface Sci 458:136–146. https://doi.org/10.1016/j.jcis.2015.07.046

    Article  CAS  Google Scholar 

  13. Moses Ezhil Raj A, Mary Delphine S, Sanjeeviraja C, Jayachandran M (2010) Growth of ZnSe thin layers on different substrates and their structural consequences with bath temperature. Physica B 405(10):2485–2491. https://doi.org/10.1016/j.physb.2010.03.019

    Article  CAS  Google Scholar 

  14. Metina H, Durmus S, Erat S, Ari M (2011) Characterization of chemically deposited ZnSe/SnO2/glass films: influence of annealing in Ar atmosphere on physical properties. Appl Surf Sci 257(15):6474–6480. https://doi.org/10.1016/j.apsusc.2011.02.047

    Article  Google Scholar 

  15. Wei A, Zhao X, Liu J, Zhao Y (2013) Investigation on the structure and optical properties of chemically deposited ZnSe nanocrystalline thin films. Physica B 410:120–125. https://doi.org/10.1016/j.physb.2012.10.031

    Article  CAS  Google Scholar 

  16. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  17. Tatarchuk TR, Bououdina M, Paliychuk ND (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791. https://doi.org/10.1016/j.jallcom.2016.10.067

    Article  CAS  Google Scholar 

  18. Tatarchuk T, Bououdina M, Macyk W, Shyichuk O, Paliychuk N, Yaremiy I, Al-Najar B, Pacia M (2017) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12(1):141–152. https://doi.org/10.1186/s11671-017-1899-x

    Article  Google Scholar 

  19. Kurta SA, Mykytyn IM, Tatarchuk TR (2014) Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina. Nanoscale Res Lett 9(1):357–365. https://doi.org/10.1186/1556-276X-9-357

    Article  Google Scholar 

  20. Kebalo GI, Lisnyak SS, Tatarchuk TR (2004) Mechanism of reactions in hematite-lithium carbonate system. Ukrainskij Khimicheskij Zhurnal 70:94–97

    CAS  Google Scholar 

  21. Horichok V, Ya H, Prokopiv VV, Pylyponiuk MA (2016) Semiempirical energies of vacancy formation in semiconductors. Ukr J Phys 61(11):992–1007. https://doi.org/10.15407/ujpe61.11.0992

    Article  Google Scholar 

  22. Marfaing Y (1996) Fundamental studies on compensation mechanisms in II–VI compounds. J Cryst Growth 161(1-4):205–213. https://doi.org/10.1016/0022-0248(95)00641-9

    Article  CAS  Google Scholar 

  23. Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N (2014) Influence of annealing medium on photoluminescence and optical properties of ZnSe:Cr crystals. J Lumin 145:237–243. https://doi.org/10.1016/j.jlumin.2013.07.018

    Article  CAS  Google Scholar 

  24. Ji Y, Cao J, Jiang L, Zhang Y, Yi Z (2014) g-C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity. J Alloys Compd 590:9–14. https://doi.org/10.1016/j.jallcom.2013.12.050

    Article  CAS  Google Scholar 

  25. Natarajan C, Sharon M, Clment CL, Spallart MN (1994) Electrodeposition of zinc selenide. Thin Solid Films 237(1-2):118–123. https://doi.org/10.1016/0040-6090(94)90247-X

    Article  CAS  Google Scholar 

  26. Lohar GM, Shinde SK, Rath MC, Fulari VJ (2014) Structural, optical, photoluminescence, electrochemical and photoelectrochemical properties of Fe doped ZnSe hexagonal nanorods. Mater Sci Semicond Process 26:548–554. https://doi.org/10.1016/j.mssp.2014.05.047

    Article  CAS  Google Scholar 

  27. Prabukanthan P, Rajesh Kumar T, Harichandran G (2015) Effect of Sm3+ on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films. Mater Res Express 2(9):096102. https://doi.org/10.1088/2053-1591/2/9/096102

    Article  Google Scholar 

  28. Ali Z, Cao C, Khan WS, Butt FK, Hussain S, Mahmood T, Nabi G, Usman Z (2012) Simultaneous growth of ZnSe cactus-like structures and novel microflowers of selenium. J Alloys Compd 513:620–625. https://doi.org/10.1016/j.jallcom.2011.11.028

    Article  CAS  Google Scholar 

  29. Yadav K, Dwivedi Y, Jaggi N (2015) Structural and optical properties of Ni doped ZnSe nanoparticles. J Lumin 158:181–187. https://doi.org/10.1016/j.jlumin.2014.09.025

    Article  CAS  Google Scholar 

  30. Wang Y, Liang X, Liu E, Hu X, Fan J (2015) Incorporation of lanthanide (Eu3+) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study. Nanotechnology 26(37):375601. https://doi.org/10.1088/0957-4484/26/37/375601

    Article  Google Scholar 

  31. Mukherjee P, Sloan RF, Shade CM, Waldeck DH, Petoud S (2013) A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C 117(27):14451–14460. https://doi.org/10.1021/jp404947x

    Article  CAS  Google Scholar 

  32. Cheng XQ, Ma CY, Yi XY, Yuan F, Xie Y, JM H, BC H, Zhang QY (2016) Structural, morphological, optical and photocatalytic properties of Gd-doped TiO2 films. Thin Solid Films 615:13–18. https://doi.org/10.1016/j.tsf.2016.06.049

    Article  CAS  Google Scholar 

  33. Theerthagiri J, Senthil RA, Priya A, Madhavan J, Michael RJV (2014) Photocatalytic and photoelectrochemical studies of visible-light active a-Fe2O3–g-C3N4 nanocomposites. RSC Adv 4(72):38222–38229. https://doi.org/10.1039/C4RA04266B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. P. Prabukanthan would like to acknowledge the financial support of Science & Engineering Research Board (SERB)-Empowerment and Equity Opportunities for Excellence in Science [EMEQ] program (F.No.SB/EMEQ-259/2014), Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabukanthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh Kumar, T., Prabukanthan, P., Harichandran, G. et al. Physicochemical and electrochemical properties of Gd3+-doped ZnSe thin films fabricated by single-step electrochemical deposition process. J Solid State Electrochem 22, 1197–1207 (2018). https://doi.org/10.1007/s10008-017-3865-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3865-z

Keywords

Navigation