Skip to main content

Advertisement

Log in

Comparative study of structural, optical and electrical properties of electrochemically deposited Eu, Sm and Gd doped ZnSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile approach involving electrochemical deposition method was utilized to coat ITO substrate with zinc selenide thin films at different rare earth metal (Eu3+, Sm3+ and Gd3+) ions. The characteristics of deposited films were studied in relation with the doped metal ions. The structure of the coating was confirmed to be hexagonal wurtzite in (101) plane by X-ray analysis. The new antistructural modeling shows that the doping of ZnSe lattice by rare earth cations increases the concentration of the surface active centers such as \({\text{Gd}}_{{{\text{Zn}}}}^{\cdot },\,{\text{Eu}}_{{{\text{Zn}}}}^{\cdot },\,{\text{Sm}}_{{{\text{Zn}}}}^{\cdot },\,{\text{and}}\,{\text{V}^{\prime\prime}_{{\text{Zn}}}}\), which are located in the cationic sublattice. XRD data revealed that the average crystallite size of ZnSe and ZnSe:Eu, ZnSe:Sm, and ZnSe:Gd was 63, 54, 47, and 49 nm, respectively. The morphological results by scanning electron microscopy indicate that the spherical-like structure with agglomeration of grains and a slight increase in the particle size. Energy dispersive X-ray, UV–Visible and photoluminescence spectroscopy were used to study the composition and optical properties of the films. A blue-shift was observed in ZnSe thin films. The bandgap energy of undoped ZnSe and ZnSe:Eu, ZnSe:Sm, and ZnSe:Gd were found to be 2.28, 2.44, 2.68 and 2.75 eV, respectively. Among the different coated films, the Gd3+ ion doped ZnSe thin film exhibited a lesser charge transfer resistance of 25.5 Ω as analyzed from the electrochemical impedance measurement. The photoelectrochemical studies reveal that the rate of photoinduced charge carriers was higher in Gd3+ ion doped thin film. The present studies suggested that the Gd3+ ion doped ZnSe thin film can be a promising material for electrochemical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Ren, Q. Li, Y. Xue, X. Zhai, M. Yu, Solvothermal synthesis of well-dispersed ZnSe microspheres. J. Colloid Interface Sci 389, 53–60 (2013)

    Article  CAS  Google Scholar 

  2. P. Prabukanthan, T. Rajesh Kumar, G. Harichandran, Effect of Sm3+ on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films. Mater. Res. Express 2, 096102 (1–10) (2015)

    Article  CAS  Google Scholar 

  3. H. Cao, Y. Xiao, S. Zhang, The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology 22, 015604 (2011)

    Article  Google Scholar 

  4. P. Prabukanthan, G. Harichandran, Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J. Electrochem. Soc. 14, D736–D741 (2014)

    Article  Google Scholar 

  5. M.E. Constantino, B. Salazar-Hernandez, Electric field effects in photoreflectance spectra of ZnSe epilayers grown on GaAs by molecular beam epitaxy. J. Phys. D 37, 93 (2004)

    Article  CAS  Google Scholar 

  6. T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, S. Chandrasekaran, J. Madhavan, Optical magnetic and photoelectrochemical properties of electrochemically deposited Eu3+- doped ZnSe thin films. Ionics 23, 2497–2507 (2017)

    Article  CAS  Google Scholar 

  7. C.H. Wallace, S. Choy, Y. Xiong, Sun, A facile synthesis of zinc blende ZnSe nanocrystals. J. Phys. D 42, 125410 (2009)

    Article  Google Scholar 

  8. G.V. Colibaban, E.P. Goncearenco, D.D. Nedeoglo, N.D. Nedeoglo, Infrared photoluminescence of ZnSe:Gd crystals. J. Lumin. 158, 451–455 (2015)

    Article  Google Scholar 

  9. V.V. Fedorov, A. Gallian, I. Moskalev, S.B. Mirov, En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II–VI semiconductors. J. Lumin. 125, 184–195 (2007)

    Article  CAS  Google Scholar 

  10. A. Gallian, Spectroscopic studies of molecular-beam epitaxially grown Cr2+–doped ZnSe thin films. Appl. Phys. Lett. 86, 091105 (2005)

    Article  Google Scholar 

  11. V.E. Kisel, Spectral kinetic properties and lasing characteristics. Opt. Spectrosc. 99(4), 663–667 (2005)

    Article  CAS  Google Scholar 

  12. J. Sharma, H. Singh, T. Singh, Study of the mobility activation in ZnSe thin films deposited using inert gas condensation. J. Sci. (2017). https://doi.org/10.1016/j.jsamd.2017.10.002

    Article  Google Scholar 

  13. P. Prabukanthan, T. Rajesh Kumar, G. Harichandran, Influence of various complexing agents on structural, morphological, optical and electrical properties of electrochemically deposited ZnSe thin films. J. Mater. Sci. 28, 14728–14737 (2017)

    CAS  Google Scholar 

  14. J. Sharma, S.K. Tripathi, Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films. Phys. B 406, 1757–1762 (2011)

    Article  CAS  Google Scholar 

  15. H. HakanYudar, S. Pat, S. Korkmaz, S. Ozen, V. Senay, Zn/ZnSe thin films deposition by RF magnetron sputtering. J. Mater. Sci.: Mater. Electron. 28, 2833–2837 (2017)

    Google Scholar 

  16. N. Liu, W. Zhou, L. Xu, L. Tong, J. Zhou, W. Su, Y. Yu, J. Xu, Z. Ma, Enhanced luminescence of ZnSe:Eu3+/ZnS core–shell quantum dots. J. Non-Cryst. Solids 358, 2353–2356 (2012)

    Article  CAS  Google Scholar 

  17. B.T. Jonker, L.D. Petersbn, J.J. Krebs, Growth and characterization of a new diluted magnetic semiconductor Zn1–XEuXSe. J. Appl. Phys. 73, 5742 (1993)

    Article  CAS  Google Scholar 

  18. B.-H. Kwon, H.S. Jang, H.S. Yoo, S.W. Kim, D.S. Kang, S. Maeng, D.S. Jang, H. Kima, D.Y. Jeon, White-light emitting surface-functionalized ZnSe quantum dots: europium complex-capped hybrid nanocrystal. J. Mater. Chem. 21, 12812–12818 (2011)

    Article  CAS  Google Scholar 

  19. D. Wruck, R. Boyn, L. Parthier, T. Buhrow, F. Henneberger, MBE-grown heavily Sm-doped ZnTe studied by optical spectroscopy. Mater. Sci. Eng. B. 44, 395–399 (1997)

    Article  Google Scholar 

  20. M.H. Yamada, T. Tanaka, Y. Maruyama, T.M. Yao, K. Akimoto, Efficient luminescence from Sm-doped ZnSSe/undoped-ZnS multi-quantum wells. J. Cryst. Growth 214/215, 935–938 (2000)

    Article  CAS  Google Scholar 

  21. G. Yellaiah, K. Hadasa, M. Nagabhushanam, Growth, characterization, optical and vibrational properties of Sm3þ doped Cd0.8Zn0.2S semiconductor compounds. J. Cryst. Growth 386, 62–68 (2014)

    Article  CAS  Google Scholar 

  22. E. Maciazek, M. Karolus, M. Kubisztal, I. Jendrzejewska, R. Sitko, T. Gron, A. Slebarski, M. Fijałkowski, Magnetic and specific heat properties of a new Gd-doped ZnCr2Se4, Mater. Chem. Phys. 168, 187–192 (2015)

    CAS  Google Scholar 

  23. A. Moses Ezhil Raj, S. Mary Delphine, C. Sanjeeviraja, M. Jayachandran, Growth of ZnSe thin layers on different substrates and their structural consequences with bath temperature. Phys. B 405, 2485–2491 (2010)

    Article  CAS  Google Scholar 

  24. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  25. T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694, 777–791 (2017)

    Article  CAS  Google Scholar 

  26. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12(1), 141–152 (2017)

    Article  Google Scholar 

  27. S.A. Kurta, I.M. Mykytyn, T.R. Tatarchuk, Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina. Nanoscale Res. Lett. 9, 357–365 (2014)

    Article  Google Scholar 

  28. G.I. Kebalo, S.S. Lisnyak, T.R. Tatarchuk, Mechanism of reactions in hematite-lithium carbonate system. Ukrainskij Khimicheskij Zhurnal 70(3–4), 94–97 (2004)

    CAS  Google Scholar 

  29. N. Priyadharsini, S. Vairam, M. Thamilselvan, Structural and optical properties of neodymium doped lead chalcogenide (PbSe) nanoparticles. Optik—Inter. J. Light Electron. Optics 127, 5046–5049 (2016)

    Article  Google Scholar 

  30. A. Khataee, S. Arefi-Oskoui, M. Fathinia, A. Fazli, A.S. Hojaghan, Y. Hanifehpour, S.W. Joo, Photocatalysis of sulfasalazine using Gd-doped PbSe nanoparticles under visible light irradiation: kinetics, intermediate identification and phyto-toxicological studies. J. Ind. Eng. Chem. 30, 134–146 (2015)

    Article  CAS  Google Scholar 

  31. P. Kumar, J. Singh, M.K. Pandey, C.E. Jeyanthi, R. Siddheswaran, M. Paulraj, K.N. Hui, K.S. Hui, Synthesis, structural, optical and Raman studies of pure and lanthanum doped ZnSe nanoparticles. Mater. Res. Bull. 49, 144–150 (2014)

    Article  CAS  Google Scholar 

  32. A. Khataee, S. Arefi-Oskoui, M. Fathinia, A. Esmaeili, Y. Hanifehpour, S.W. Joo, N. Hamnabard, Synthesis, characterization and photocatalytic properties of Er-doped PbSe nanoparticles as a visible light-activated photocatalyst. J. Mol. Catal. A 398, 255–267 (2015)

    Article  CAS  Google Scholar 

  33. P. Prabukanthan, R. Dhanasekaran, Influence of Mn doping on CuGaS2 single crystals grown by CVT method and their characterization. J. Phys. D: Appl. Phys. 41, 115102 (2008)

  34. T.R. Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, T. Tatarchuk, T. Maiyalagan, G. Maia, M. Bououdina, Physicochemical and electrochemical properties of Gd3+-doped ZnSe thin films fabricated by single-step electrochemical deposition process. J. Solid State Electrochem. (2017) https://doi.org/10.1007/s10008-017-3865-z

    Article  Google Scholar 

  35. K. Yadav, Y. Dwivedi, N. Jaggi, Structural and optical properties of Ni doped ZnSe nanoparticles. J. Lumin. 158, 181–187 (2015)

    Article  CAS  Google Scholar 

  36. Q.Z. Zeng, S.L. Xue, S.X. Wu, K.X. Gan, L. Xu, J.W. Han, W.K. Zhou, Y.T. Shi, R.J. Zou, Synthesis, field emission and optical properties of ZnSe nanobelts, nanorods and nanocones by hydrothermal method. Mater. Sci. Semicond. Process 31, 189–194 (2015)

    Article  CAS  Google Scholar 

  37. Z. Zhang, N. Evans, S.M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, Effects of ω-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells. J. Phys. Chem. C 111, 398–403 (2007)

    Article  CAS  Google Scholar 

  38. L. Jia, H. Kou, Y. Jiang, S. Yu, J. Li, C. Wang, Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties. Electrochim. Acta 107, 71–77 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. P. Prabukanthan would like to acknowledge the financial support of Science & Engineering Research Board (SERB)-Empowerment and equity opportunities for Excellence in Science [EMEQ] program (File No. SB/EMEQ-259/2014), Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabukanthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.R., Prabukanthan, P., Harichandran, G. et al. Comparative study of structural, optical and electrical properties of electrochemically deposited Eu, Sm and Gd doped ZnSe thin films. J Mater Sci: Mater Electron 29, 5638–5648 (2018). https://doi.org/10.1007/s10854-018-8533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8533-2

Navigation