Skip to main content
Log in

Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Proton-conducting solid polymer blend electrolytes based on methylcellulose-polyvinyl alcohol:ammonium nitrate (MC-PVA:NH4NO3) were prepared by the solution cast technique. The structural and electrical properties of the samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electrical impedance (EI) spectroscopy. The shifting and change in the intensity of FTIR bands of the electrolyte samples confirm the complex formation between the MC-PVA polymer blend and the NH4NO3 added salt. The observed broadening in the XRD pattern of the doped samples reveals the increase of the amorphous fraction of polymer electrolyte samples. The increase in electrical conductivity of polymer electrolyte samples with increasing salt concentration attributed to the formation of charge-transfer complexes, and to increase in the amorphous domains. A maximum ionic conductivity of about 7.39 × 10−5 S cm−1 was achieved at room temperature for the sample incorporating 20 wt% of NH4NO3. The DC conductivity of the present polymer system exhibits Arrhenius-type dependence with temperature. The decrease in the values of activation energies with increasing salt concentration indicates the ease mobility of ions. The decrease in dielectric constant with increasing frequency was observed at all temperatures. Optical properties such as absorption edge, optical band gap, and tail of localized state were estimated for polymer blend and their electrolyte films. It was found that the optical band gap values shifted towards lower photon energy from 6.06 to 4.75 eV by altering the NH4NO3 salt content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albu AM, Maior I, Nicolae CA, Bocaneala FL (2016) Novel PVA proton conducting membranes doped with polyaniline generated by in-situ polymerization. Electrochim Acta 211:911–917

    Article  CAS  Google Scholar 

  2. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/ionic liquid [EMIM][EtSO4] based polymer electrolytes. J Phys Chem Solids 73:162–168

    Article  CAS  Google Scholar 

  3. Rajendran S, Sivakumar M, Subadevi R (2004) Li-ion conduction of plasticized PVA solid polymer electrolytes complexed with various lithium salts. Solid State Ionics 167:335–339

    Article  CAS  Google Scholar 

  4. Mohan VM, Raja V, Bhargav PB, Sharma AK, Rao VVRN (2007) Structural, electrical and optical properties of pure and NaLaF4 doped PEO polymer electrolyte films. J Polym Res 14:283–290

    Article  CAS  Google Scholar 

  5. Achari VB, Reddy TJR, Sharma AK, Rao VVRN (2007) Electrical, optical, and structural characterization of polymer blend (PVC/PMMA) electrolyte films. Ionics 13:349–354

    Article  CAS  Google Scholar 

  6. Saroj AL, Singh RK (2011) Studies on ionic liquid 1-ethyl-3-methyl imidazolium ethylsulphate complexed with PVA. Phase Transit 84:231–242

    Article  CAS  Google Scholar 

  7. Yamada T, Sadakiyo M, Shigematsu A, Kitagawa H (2016) Proton-conductive metal organic frameworks. Bull Chem Soc Jpn 89:1–10

    Article  CAS  Google Scholar 

  8. Kochetova N, Animitsa I, Medvedev D, Deminb A, Tsiakaras P (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv 6:73222–73268

    Article  CAS  Google Scholar 

  9. Colomban P (1992) Proton conductors: solids, membrane and gels-materials and devices. Cambridge University, Cambridge

    Book  Google Scholar 

  10. Ali AMM, Mohamed NS, Arof AK (1998) Polyethylene oxide (PEO)-ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance. J Power Sources 74:135–141

    Article  CAS  Google Scholar 

  11. Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) Proton conducting polymer electrolyte: II poly ethylene oxide + NH4l system. J Mater Sci 27:6357–6364

    Article  CAS  Google Scholar 

  12. Shukur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices. Opt Mater 35:1834–1841

    Article  CAS  Google Scholar 

  13. Liew CW, Ramesh S, Arof AK (2015) Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors. Int J Hydrogen Energ 40:852–862

    Article  CAS  Google Scholar 

  14. Muthuvinayagam M, Gopinathan C (2015) Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA. Polymer 68:122–130

    Article  CAS  Google Scholar 

  15. Woo HJ, Arof AK (2016) Vibrational studies of flexible solid polymer electrolyte based on PCL-EC incorporated with proton conducting NH4SCN. Spectrochim Acta A 161:44–51

    Article  CAS  Google Scholar 

  16. Aziz NAN, Idris NK, Isa MIN (2010) Solid polymer electrolytes based on methylcellulose: FT-IR and ionic conductivity studies. Int J Polym Anal Charact 15:319–327

    Article  Google Scholar 

  17. Krumova M, Lopez D, Benavente R, Mijangos C, Parena JM (2000) Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer 41:9265–9272

    Article  CAS  Google Scholar 

  18. Kuljanin J, Comor MI, Djokovic V, Nedeljkovic JM (2006) Synthesis and characterization of nanocomposite of polyvinyl alcohol and lead sulfide nanoparticles. Mater Chem Phys 95:67–71

    Article  CAS  Google Scholar 

  19. Badr S, Sheha E, Bayomi RM, El-Shaarawy MG (2010) Structural and electrical properties of pure and H2SO4 doped (PVA)0.7(NaI)0.3 solid polymer electrolyte. Ionics 16:269–275

    Article  CAS  Google Scholar 

  20. Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20:1235–1245

    Article  CAS  Google Scholar 

  21. Shuhaimi NEA, Teo LP, Woo HJ, Majid SR, Arof AK (2012) Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym Bull 69:807–826

    Article  CAS  Google Scholar 

  22. Gauthier M, Armand M, Mulle D (1988) Electrosponsive molecular and polymeric systems, vol 1. Marcel Dekker, New York

    Google Scholar 

  23. Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280

    Article  CAS  Google Scholar 

  24. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230

    Article  CAS  Google Scholar 

  25. Chandrakala HN, Ramaraj B, Shivakumaraiah, Madhu GM, Siddaramaiah (2012) The influence of zinc oxide-cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films. J Mater Sci 47:8076–8084

  26. Bdewi SF, Abdullah OG, Aziz BK, Mutar AAR (2016) Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J Inorg Organomet Polym Mater 26:326–334

    Article  CAS  Google Scholar 

  27. Wu HB, Chan MN, Chan CK (2007) FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Sci Technol 41:581–588

    Article  CAS  Google Scholar 

  28. Kadir MFZ, Aspanut Z, Majid SR, Arof AK (2011) FTIR studies of plasticized poly(vinyl alcohol)-chitosan blend doped with NH4NO3 polymer electrolyte membrane. Spectrochim Acta A 78:1068–1074

    Article  CAS  Google Scholar 

  29. Liu JH, Zhang YH, Wang LY, Wei ZF (2005) Drawing out the structural information of the first layer of hydrated ions: ATR-FTIR spectroscopic studies on aqueous NH4NO3, NaNO3, and Mg(NO3)2 solutions. Spectrochim Acta A 61:893–899

    Article  Google Scholar 

  30. Chintapalli S, Zea C, Frech R (1996) Characterization studies on high molecular weight PEO-ammonium triflate complexes. Solid State Ionics 92:205–212

    Article  CAS  Google Scholar 

  31. Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Physica B 403:2740–2747

    Article  CAS  Google Scholar 

  32. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2007) Structural, electrical and optical characterization of pure and doped poly (vinyl alcohol) (PVA) polymer electrolyte films. Int J Polym Mater Polymeric Biomater 56:579–591

    Article  CAS  Google Scholar 

  33. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical properties of proton conducting solid biopolymer electrolytes based on starch–chitosan blend. Ionics 20:977–999

    Article  CAS  Google Scholar 

  34. Abdullah OG, Salman YAK, Saleem SA (2015) In-situ synthesis of PVA/HgS nanocomposite films and tuning optical properties. Phys Mater Chem 3:18–24

    CAS  Google Scholar 

  35. Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B 355:78–82

    Article  CAS  Google Scholar 

  36. Abdullah GO, Aziz SB, Rasheed MA (2016) Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results in Physics 6:1103–1108

    Article  Google Scholar 

  37. Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22:877–883

    Article  CAS  Google Scholar 

  38. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  CAS  Google Scholar 

  39. Abdullah OG (2016) Synthesis of single-phase zinc chromite nano-spinel embedded in polyvinyl alcohol films and its effects on energy band gap. J Mater Sci Mater Electron 27:12106–12111

    Article  CAS  Google Scholar 

  40. Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR, Arof AK (2010) Characteristics of methyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells. J Solid State Electrochem 14:2153–2159

    Article  CAS  Google Scholar 

  41. Hema M, Selvasekarapandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2010) Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte. Spectrochim Acta A 75:474–478

    Article  CAS  Google Scholar 

  42. Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119

    Article  CAS  Google Scholar 

  43. Reddy TJR, Achari VBS, Sharma AK, Rao VVRN (2007) Preparation and electrical characterization of (PVC + KBrO3) polymer electrolytes for solid state battery applications. Ionics 13:435–439

    Article  CAS  Google Scholar 

  44. Reddeppa N, Reddy TJR, Achari VBS, Rao VVRN, Sharma AK (2009) Electrical and optical characterization of (PEO+PVAc) polyblend films. Ionics 15:255–259

    Article  CAS  Google Scholar 

  45. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171

    Article  Google Scholar 

  46. Abdullah OG, Salman YAK, Saleem SA (2016) Electrical conductivity and dielectric characteristics of in-situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27:3591–3598

    Article  CAS  Google Scholar 

  47. Raj CJ, Varma KBR (2010) Synthesis and electrical properties of the (PVA)0.7(KI)0.3·xH2SO4 (0 ≤ x ≤ 5) polymer electrolytes and their performance in a primary Zn/MnO2 battery. Electrochim Acta 56:649–656

    Article  Google Scholar 

  48. Hema M, Selvasekarapandian S, Nithya H, Sakunthala A, Arunkumar D (2009) Structural and ionic conductivity studies on proton conducting polymer electrolyte based on polyvinyl alcohol. Ionics 15:487–491

    Article  CAS  Google Scholar 

  49. Khiar ASA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  50. Abdullah OG, Saleem SA (2016) Effect of copper sulfide nanoparticles on the optical and electrical behavior of poly (vinyl alcohol) films. J Electron Mater 45:5910–5920

    Article  CAS  Google Scholar 

  51. Aziz SB (2016) Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45:736–745

    Article  CAS  Google Scholar 

  52. Sheha E, El-Mansy MK (2008) A high voltage magnesium battery based on H2SO4-doped (PVA)0.7(NaBr)0.3 solid polymer electrolyte. J Power Sources 185:1509–1513

    Article  CAS  Google Scholar 

  53. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98:167–174

    Article  CAS  Google Scholar 

  54. Wintersgill MC, Fontanella JJ, Pak YS, Greenbaum SG, Al-Mudaris A, Chadwick AV (1989) Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts. Polymer 30:1123–1126

    Article  CAS  Google Scholar 

  55. Aziz SB, Abdullah OG, Rasheed MA, Ahmed HM (2017) Effect of high salt concentration (HSC) on structural, morphological and electrical characteristics of chitosan based solid polymer electrolytes. Polymers 9:187

    Article  Google Scholar 

  56. Zangina T, Hassan J, Matori KA, Azis RS, Ahmadu U, See A (2016) Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results in Physics 6:719–725

    Article  Google Scholar 

  57. Buruiana LI, Avram E, Popa A, Musteata VE, Ioan S (2012) Electrical conductivity and optical properties of a new quaternized polysulfone. Polym Bull 68:1641–1661

    Article  CAS  Google Scholar 

  58. Aziz SB, Abdullah OG, Saber DR, Rasheed MA, Ahmed HM (2017) Investigation of metallic silver nanoparticles through UV-vis and optical micrograph techniques. Int J Electrochem Sci 12:363–373

    Article  CAS  Google Scholar 

  59. Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VVRN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531–536

    Article  Google Scholar 

  60. Abdullah OG, Aziz SB, Rasheed MA (2017) Effect of silicon powder on the optical characterization of poly(methyl methacrylate) polymer composites. J Mater Sci Mater Electron 28:4513–4520

    Article  CAS  Google Scholar 

  61. Abdulwahid RT, Abdullah OG, Aziz SB, Hussein SA, Muhammad FF, Yahya MY (2015) The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. J Mater Sci Mater Electron 27:12112–12118

    Article  Google Scholar 

  62. Reddy CVS, Sharma AK, Rao VVRN (2006) Electrical and optical properties of a polyblend electrolyte. Polymer 47:1318–1323

    Article  Google Scholar 

  63. Aziz SB, Abdullah OG, Rasheed MA (2017) A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J Appl Polym Sci 134:44847

    Google Scholar 

  64. Mohan KR, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886

    Article  Google Scholar 

  65. Devi CU, Sharma AK, Rao VVRN (2002) Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater Lett 56:167–174

    Article  CAS  Google Scholar 

  66. Aziz SB, Abdullah OG, Hussein AM, Abdulwahid RT, Rasheed MA, Ahmed HM, Abdalqadir SW, Mohammed AR (2017) Optical properties of pure and doped PVA: PEO based solid polymer blend electrolytes: two methods for band gap study. J Mater Sci Mater Electron 28:7473–7479

    Article  CAS  Google Scholar 

  67. Aziz SB, Rasheed MA, Saeed SR, Abdullah OG (2017) Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique. Int J Electrochem Sci 12:3263–3274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Ministry of Higher Education and Scientific Research in Kurdistan Region, University of Sulaimani, and University of Human Development for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Aziz, S.B. & Rasheed, M.A. Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics 24, 777–785 (2018). https://doi.org/10.1007/s11581-017-2228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2228-1

Keywords

Navigation