Skip to main content
Log in

Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) plasticized polymer electrolytes based on methyl cellulose have been prepared using the solution casting technique. Interactions between component materials in the electrolyte have been examined using Fourier transform infrared spectroscopy. The polymer-salt spectrum indicates that interaction occurred at the oxygen atom with the shift of the C–O stretching mode. Inference from the Nyquist plot suggests that the material can be represented by a resistor connected in series with a constant phase element. Capacitance evaluated from the fitting equation representing impedance of the equivalent circuit is observed to decrease with increasing temperature. From linear sweep voltammogram, the 63.75 wt% MC-21.25 wt% NH4NO3-15 wt% PEG, which is the highest conducting plasticized sample shows good electrochemical stability. This material has been tested as an electrolyte in electrical double-layer capacitor fabricated in this study. The electrochemical properties of the capacitors have been investigated by cyclic voltammetry, charge-discharge, and self-discharge characteristics. The discharge capacitance obtained is 38 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gualous H, Bouquain D, Berthon A, Kauffmann JM (2003) Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sour 123:86–93

    Article  CAS  Google Scholar 

  2. Tanahashi I (2005) Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber. J Appl Electrochem 35:1067–1072

    Article  CAS  Google Scholar 

  3. Shuhaimi NEA, Majid SR, Arof AK (2009) On complexation between methyl cellulose and ammonium nitrate. Mater Res Innovat 13:239–242

    Article  CAS  Google Scholar 

  4. Shuhaimi NEA, Teo LP, Majid SR, Arof AK (2010) Transport studies of NH4NO3 doped methyl cellulose electrolyte. Synth Met 160:1040–1044

    Article  CAS  Google Scholar 

  5. Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR, Arof AK (2010) Characteristics of methyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells. J Solid State Electrochem 14:2153–2159

    Article  CAS  Google Scholar 

  6. Garcìa MA, Pinotti A, Martino M, Zaritzky N (2009) Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloid 23:722–728

    Article  Google Scholar 

  7. Filho GR, de Assunção RMN, Viera JG, Meireles CS, Cerqueira DA, da Silva Barud H, Ribeiro SJL, Messaddeq Y (2007) Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab 92:205–210

    Article  Google Scholar 

  8. Ozeki T, Yuasa H, Okada H (2005) Controlled release of drug via methylcellulose-carboxyvinylpolymer interpolymer complex solid dispersion. AAPS PharmSciTech 6:E231–E236

    Article  Google Scholar 

  9. Yin J, Luo K, Chen X, Khutoryanskiy VV (2006) Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr Polym 63:238–244

    Article  CAS  Google Scholar 

  10. Gotoh Y, Fujimura K, Ohkoshi Y, Nagura M, Akamatsu K, Shigehito D (2004) Preparation of transparent alumina film and fiber from a composite of aluminum polynuclear complex/methyl cellulose. Mater Chem Phys 83:54–59

    Article  CAS  Google Scholar 

  11. Park JS, Ruckestein E (2001) Viscoelastic properties of plasticized methylcellulose and chemically crosslinked methylcellulose. Carbohyd Polym 46:373–381

    Article  CAS  Google Scholar 

  12. Lin S-Y, Wang S-L, Wei Y-S, Li M-J (2007) Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR microspectroscopy. Surf Sci 601:781–785

    Article  CAS  Google Scholar 

  13. Ramya CS, Selvasekarapandian S, Savitha T (2008) Proton-conducting membranes: poly (N-vinyl pyrrolidone) complexes with various ammonium salts. J Solid State Electrochem 12:807–814

    Article  CAS  Google Scholar 

  14. Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297–1304

    Article  CAS  Google Scholar 

  15. Binesh N, Bhat SV (1996) Concentration-dependent NMR and conductivity studies of (PEG) x NH4ClO4. Solid State Ionics 92:261–264

    Article  CAS  Google Scholar 

  16. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  17. Xu W, Siow KS, Gao Z, Lee SY (1998) A.C. impedance study on the interface of lithium and polymer electrolyte based on lithium-N(4-sulfophenyl) malaeimide. Solid State Ionics 112:1–8

    Article  CAS  Google Scholar 

  18. Latham RJ, Rowlands SE, Schlindwein WS (2002) Supercapacitors using polymer electrolytes based on poly(urethane). Solid State Ionics 147:243–248

    Article  CAS  Google Scholar 

  19. Chang J-K, Shong D-NS, Tsai W-T (2003) Effects of alloying elements and binder on the electrochemical behavior of metal hydride electrodes in potassium hydroxide electrolyte. J Solid State Electrochem 7:485–491

    Article  CAS  Google Scholar 

  20. Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque JF (1999) Possible improvements in making carbon electrodes for organic supercapacitors. J Power Sour 79:238–241

    Article  CAS  Google Scholar 

  21. Kolhe P, Kannan RM (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4:173–180

    Article  CAS  Google Scholar 

  22. Rajendran S, Babu RS, Sivakumar P (2007) Effect of salt concentration on poly(vinyl chloride)/poly(acrylonitrile) based hybrid polymer electrolytes. J Power Sour 170:460–464

    Article  CAS  Google Scholar 

  23. Liu W, Zhang B, Lu WW, Li X, Zhu D, Yao DK, Wang Q, Zhao C, Wang C (2004) A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012

    Article  CAS  Google Scholar 

  24. Pinotti A, García MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloid 21:66–72

    Article  CAS  Google Scholar 

  25. Rimdusit S, Jingjid S, Damrongsakkul S, Tiptipakorn S, Takeichi T (2008) Biodegradabality and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohyd Polym 72:444–455

    Article  CAS  Google Scholar 

  26. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte. J Non-Crystalline Solids 354:1494–1502

    Article  CAS  Google Scholar 

  27. Majid SR (2007) High polymer weight chitosan as polymer electrolyte for electrochemical devices. Dissertation, University of Malaya, Kuala Lumpur

  28. Hashmi SA, Kumar A, Maurya KK, Chandra S (1990) Proton-conducting polymer electrolyte 1: the polyethylene oxide + NH4ClO4 system. J Phys D Appl Phys 23:1307–1314

    Article  CAS  Google Scholar 

  29. Singh HP, Kumar R, Sekhon SS (2005) Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3. Bull Mater Sci 28:467–472

    Article  CAS  Google Scholar 

  30. Marinković NS, Calvente JJ, Kloss A, Kováčová Z, Fawcett WR (1999) SNIFTIRS studies of the electrochemical double layer Part II. Au(111) electrode in solutions with specifically adsorbed nitrate ions. J Electroanal Chem 467:325–334

    Article  Google Scholar 

  31. Zhang J, Han F, Wei X, Shui L, Gong H, Zhang P (2010) Spectral studies of hydrogen bonding and interaction in the absorption processes of sulfur dioxide in poly(ethylene glycol) 400 + water binary system. Ind Eng Chem Res 49:2025–2030

    Article  CAS  Google Scholar 

  32. Fang C, Bhattarai N, Sun C, Zhang M (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5:1637–1641

    Article  CAS  Google Scholar 

  33. Deng Y, Dixon JB, White GN (2006) Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym Sci 284:347–356

    Article  CAS  Google Scholar 

  34. Ayranci E, Tunc S (1997) Cellulose-based edible films and their effects on fresh beans and strawberries. Z Lebensm Unters Forsch A 205:470–473

    Article  CAS  Google Scholar 

  35. Park MK, Kim HS, An JH, Kim J (2005) New oligomeric ether plasticizers for solid polymer electrolytes: Synthesis and electrical properties of oligomeric PEO having bis(five-membered cyclic carbonate)s at chain ends. J Ind Eng Chem 11:222–227

    CAS  Google Scholar 

  36. Subban RHY, Ahmad AH, Kamarulzaman N, Ali AMM (2005) Effects of plasticiser on the lithium ionic conductivity of polymer electrolyte PVC-LiCF3SO3. Ionics 11:442–445

    Article  CAS  Google Scholar 

  37. Pradhan DK, Choudhary RNP, Samantaray BK, Karan NK, Katiyar RS (2007) Effect of plasticizer on structural and electrical properties of polymer nanocomposite electrolytes. Int J Electrochem Sci 2:861–871

    CAS  Google Scholar 

  38. Srivastava N, Chandra S (2000) Studies on a new proton conducting polymer system: poly(ethylene succinate) + NH4ClO4. Eur Polym J 36:421–433

    Article  CAS  Google Scholar 

  39. Wu GM, Lin SJ, Yang CC (2006) Preparation and characterization of PVA/PPA membranes for solid polymer electrolytes. J Membr Sci 275:127–133

    Article  CAS  Google Scholar 

  40. Lee CH, Park HB, Lee YM, Lee RD (2005) Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind Eng Chem Res 44:7617–7626

    Article  CAS  Google Scholar 

  41. Han DG, Choi GM (1998) Computer simulation of the electrical conductivity of composites: the effect of geometrical arrangement. Solid State Ionics 106:71–87

    Article  CAS  Google Scholar 

  42. Gerbaldi C, Nair JR, Meligrana G, Bongiovanni R, Bodoardo S, Penazzi N (2009) Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. J Appl Electrochem 39:2199–2207

    Article  CAS  Google Scholar 

  43. Hashmi SA, Kumar A, Tripathi SK (2007) Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors. J Phys D 40:6527–6534

    Article  CAS  Google Scholar 

  44. Chandrasekaran R, Soneda Y, Yamashita J, Kodama M, Hatori H (2008) Preparation and electrochemical performance of activated carbon thin films with polyethylene oxide-salt addition for electrochemical capacitor applications. J Solid State Electrochem 12:1349–1355

    Article  CAS  Google Scholar 

  45. Pandey GP, Kumar Y, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ionics 190:93–98

    Article  CAS  Google Scholar 

  46. Wei Y-Z, Fang B, Iwasa S, Kumagai M (2005) A novel electrode material for electric double-layer capacitors. J Power Sour 141:386–391

    Article  CAS  Google Scholar 

  47. Subramaniam CK, Ramya CS, Ramya K (2011) Performance of EDLCs using Nafion and Nafion composites as electrolyte. J Appl Electrochem 41:197–206

    Article  CAS  Google Scholar 

  48. Lavall RL, Borges RS, Calado HDR, Welter C, Trigueiro JPC, Rieumont J, Neves BRA, Silva GG (2008) Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites. J Power Sour 177:652–659

    Article  CAS  Google Scholar 

  49. Kumar MS, Bhat DK (2009) Polyvinyl alcohol-polystyrene sulphonic acid blend electrolyte for supercapacitor application. Phys B 404:1143–1147

    Article  Google Scholar 

  50. Ricketts BW, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sour 89:64–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge University of Malaya for providing financial support (PS223/2008C and PS312/2009C) and to the Ministry of Higher Education Malaysia (MOHE) for grant awarded (FP048/2008C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuhaimi, N.E.A., Teo, L.P., Woo, H.J. et al. Electrical double-layer capacitors with plasticized polymer electrolyte based on methyl cellulose. Polym. Bull. 69, 807–826 (2012). https://doi.org/10.1007/s00289-012-0763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0763-5

Keywords

Navigation