Skip to main content
Log in

Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An innovative method has been used to reduce the bandgap of poly(vinyl alcohol) (PVA) polymer by addition of a nontoxic, inexpensive, and environmentally friendly material. The resulting materials are small-bandgap polymers, hence opening new frontiers in green chemistry. The doped PVA films showed a wide range of light absorption of the solar spectrum from 200 nm to above 800 nm. Nonsharp absorption behavior versus wavelength was observed for the samples. The refractive index exhibited a wide range of dispersion. Shift of the absorption edge from 6.2 eV to 1.5 eV was observed. The energy bandgap of PVA was diminished to 1.85 eV upon addition of black tea extract solution, lying in the range of small-bandgap polymers. Increase of the optical dielectric constant was observed with increasing tea solution addition. The results indicate that small-bandgap PVA with good film-forming ability could be useful in terms of cost–performance tradeoff, solving problems of short lifetime, cost, and flexibility associated with conjugated polymers. The decrease of the Urbach energy upon addition of black tea extract solution indicates modification of PVA from a disordered to ordered material. X-ray diffraction results confirm an increase of the crystalline fraction in the doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Ashby, J.A. Thomas, J. García-Cañadas, G. Min, J. Corps, A.V. Powell, H. Xu, W. Shend, and Y. Chao, Faraday Discuss. 176, 349 (2014).

    Article  Google Scholar 

  2. L. Tsakalakos, Mater. Sci. Eng., R 62, 175 (2008).

    Article  Google Scholar 

  3. A.J. Mozer and N.S. Sariciftci, C. R. Chim. 9, 568 (2006).

    Article  Google Scholar 

  4. S.C. Jain, T. Aernout, A.K. Kapoor, V. Kumar, W. Geens, J. Poortmans, and R. Mertens, Synth. Met. 148, 245 (2005).

    Article  Google Scholar 

  5. A.T. Mallajosyula, N. Srivastava, S.S. Kumar, and B. Mazhari, Sol. Energy Mater. Sol. Cells 94, 1319 (2010).

    Article  Google Scholar 

  6. B.-T. Liu, Sh-J Tang, Y.-Y. Yu, and S.-H. Lin, Colloids Surf. A 377, 138 (2011).

    Article  Google Scholar 

  7. H. Lei, G. Fang, F. Cheng, W. Ke, P. Qin, Z. Song, Q. Zheng, X. Fan, H. Huang, and X. Zhao, Sol. Energy Mater. Sol. Cells 128, 77 (2014).

    Article  Google Scholar 

  8. E. Sheha and M.K. El-Mansy, J. Power Sources 185, 1509 (2008).

    Article  Google Scholar 

  9. J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, M. Hema, R. Baskaran, and S. Selvasekarapandian, J. Non-Cryst. Solids 356, 2277 (2010).

    Article  Google Scholar 

  10. S. Rajendran, M. Sivakumar, and R. Subadevi, Solid State Ionics 167, 335 (2004).

    Article  Google Scholar 

  11. J. Qiao, J. Fu, R. Lin, J. Mac, and J. Liu, Polymer 51, 4850 (2010).

    Article  Google Scholar 

  12. P.B. Bhargav, V.M. Mohan, A.K. Sharma, and V.V.R.N. Rao, Int. J. Polym. Mater. 56, 579 (2007).

    Article  Google Scholar 

  13. S.G. Kumar and K.S.R.K. Rao, Energy Environ. Sci. 7, 45 (2014).

    Article  Google Scholar 

  14. T. Ameri, N. Lia, and ChJ Brabec, Energy Environ. Sci. 6, 2390 (2013).

    Article  Google Scholar 

  15. F. Yakuphanoglu and M. Arslan, Solid State Commun. 132, 229 (2004).

    Article  Google Scholar 

  16. A.M. Abdul-Kader, J. Nucl. Mater. 435, 231 (2013).

    Article  Google Scholar 

  17. S.B. Aziz, S. Hussein, A.M. Hussein, and S.R. Saeed, Int. J. Met. (2013). doi:10.1155/2013/123657.

    Google Scholar 

  18. V. Bavastrello, T.B.C. Terenc, and C. Nicolini, Polymer 52, 46 (2011).

    Article  Google Scholar 

  19. F. Yakuphanoglu, M. Kandaz, M.N. Yarasir, and F.B. Senkal, Phys. B 393, 235 (2007).

    Article  Google Scholar 

  20. F. Yakuphanoglu, M. Sekerci, and A. Balaban, Opt. Mater. 27, 1369 (2005).

    Article  Google Scholar 

  21. K. Asai, G.-I. Konishi, K. Sumi, and K. Mizuno, J. Organomet. Chem. 696, 1236 (2011).

    Article  Google Scholar 

  22. R. Seto, T. Kojima, K. Hosokawa, Y. Koyama, G. Konishi, and T. Takata, Polymer 51, 4744 (2010).

    Article  Google Scholar 

  23. M. Campoy-Quiles, C. Müller, M. Garrig, E. Wang, O. Inganäs, and M.I. Alonso, Thin Solid Films 571, 371 (2014).

    Article  Google Scholar 

  24. F.F. Muhammad and K. Sulaiman, Thin Solid Films 519, 5230 (2011).

    Article  Google Scholar 

  25. H.Y. Stoyanov, I.L. Stefanov, G.G. Tsutsumanova, S.C. Russev, and G.B. Hadjichristov, Vacuum 86, 1822 (2012).

    Article  Google Scholar 

  26. W. Shi, Ch Fang, X. Yin, Q. Pan, X. Sun, Q. Gu, and J. Yu, Opt. Lasers Eng. 32, 41 (1999).

    Article  Google Scholar 

  27. F.F. Muhammad, S.B. Aziz, and S.A. Hussein, J. Mater. Sci.: Mater. Electron. 26, 521 (2015).

    Google Scholar 

  28. L. Bi, A.R. Taussig, H. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, and C.A. Ross, Phys. Rev. B 78, 104106 (2008).

    Article  Google Scholar 

  29. R.H. French, J.M. Rodrguez-Parada, M.K. Yang, R.A. Derryberry, and N.T. Pfeiffenberger, Sol. Energy Mater. Sol. Cells 95, 2077 (2011).

    Article  Google Scholar 

  30. F. Yakuphanoglu and M. Arslan, Solid State Commun. 132, 229 (2004).

    Article  Google Scholar 

  31. F.F. Muhammad and K. Sulaiman, Mater. Chem. Phys. 148, 473 (2014).

    Article  Google Scholar 

  32. F.F. Muhammad, A.I.A. Hapip, and K. Sulaiman, J. Organomet. Chem. 695, 2526 (2010).

    Article  Google Scholar 

  33. L. Wang, X. Jiang, Zh Zhang, and S. Xu, Displays 21, 47 (2000).

    Article  Google Scholar 

  34. F. Yakuphanoglu, G. Barm, and I. Erol, Phys. B 391, 136 (2007).

    Article  Google Scholar 

  35. H. Lei, G. Fang, F. Cheng, W. Ke, P. Qin, Z. Song, Q. Zheng, X. Fan, H. Huang, and X. Zhao, Sol. Energy Mater. Sol. Cells 128, 77 (2014).

    Article  Google Scholar 

  36. R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, and B. De Boer, Polym. Rev. 48, 531 (2008).

    Article  Google Scholar 

  37. J. Li, S. Jin, Y.-G. Zu, M. Luo, W. Wang, C.-J. Zhao, and Y.-J. Fu, J. Food Compos. Anal. 33, 139 (2014).

    Article  Google Scholar 

  38. C.D. Kanakis, I. Hasni, P. Bourassa, P.A. Tarantilis, M.G. Polissiou, and H.-A. Tajmir-Riahi, Food Chem. 127, 1046 (2011).

    Article  Google Scholar 

  39. J.J.J. van der Hooft, M. Akermi, F.Y. ÜnlÜ, V. Mihaleva, V.G. Roldan, R.J. Bino, R.C.H. de Vos, and J. Vervoort, J. Agric. Food Chem. 60, 8841 (2012).

    Article  Google Scholar 

  40. S. Li, C.-Y. Lo, M.-H. Pan, C.-S. Laic, and C.-T. Ho, Food Funct. 4, 10 (2013).

    Article  Google Scholar 

  41. J.W. Drynan, M.N. Clifford, J. Obuchowiczc, and N. Kuhnert, Nat. Prod. Rep. 27, 417 (2010).

    Article  Google Scholar 

  42. Q. An, F. Zhang, J. Zhang, W. Tang, Z. Wang, L. Li, Z. Xu, F. Teng, and Y. Wang, Sol. Energy Mater. Sol. Cells 118, 30 (2013).

    Article  Google Scholar 

  43. Y. Rao, X. Li, X. Lei, S. Jockusch, M.W. George, N.J. Turro, and K.B. Eisenthal, J. Phys. Chem. A 113, 9337 (2009).

    Article  Google Scholar 

  44. N.A. Bakr, A.M. Funde, V.S. Waman, M.M. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S. Gosavi, and Jadkar SR, J. Phys. 76, 519 (2011).

    Google Scholar 

  45. F. Yakuphanoglu, M. Sekerci, and O.F. Ozturk, Opt. Commun. 239, 275 (2004).

    Article  Google Scholar 

  46. F.F. Muhammad and K. Sulaiman, Measurement 44, 1468 (2011).

    Article  Google Scholar 

  47. S. Prasher, M. Kumar, and S. Singh, Int. J. Polym. Anal. Character. 19, 204 (2014).

    Article  Google Scholar 

  48. S.A. Saq’an, A.S. Ayesh, A.M. Zihlif, E. Martuscelli, and G. Ragosta, Polym. Test. 23, 739 (2004).

    Article  Google Scholar 

  49. N. Ahad, E. Saion, and E. Gharibshahi, J. Nanomater. (2012). doi:10.1155/2012/857569.

    Google Scholar 

  50. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar, and H. Nithya, Phys. B 403, 2740 (2008).

    Article  Google Scholar 

  51. M. Cano, U. Khan, T. Sainsbury, A. Neill, Z. Wang, I.T. McGovern, W.K. Maser, A.M. Benito, and J.N. Coleman, Carbon 52, 363 (2013).

    Article  Google Scholar 

  52. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J. Chem. Soc. Chem. Commun. (1977). doi:10.1039/C39770000578.

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Fahmi F. Muhammad for XRD measurements and Dr. Omed Gh. Abdullah for UV–Vis measurements. The author gratefully acknowledges the Ministry of Higher Education and Scientific Research, Kurdistan Regional Government, University of Sulaimani for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujahadeen B. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.B. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. J. Electron. Mater. 45, 736–745 (2016). https://doi.org/10.1007/s11664-015-4191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4191-9

Keywords

Navigation