Skip to main content

Advertisement

Log in

Ecologically friendly xanthan gum-PVA matrix for solid polymeric electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Two water-soluble and biodegradable polymers: xanthan gum (XG) and poly(vinyl alcohol) (PVA) were used to synthesize ecologically friendly solid polymer electrolyte (SPE) matrices. While XG is a natural polymer, PVA is a synthetic one, but both are colorless and form transparent membranes. To obtain ionic conductivity properties, the samples were doped with acetic acid and characterized by electrochemical impedance spectroscopy (EIS), X-ray diffraction, UV-Vis spectroscopy, and tensile test. The best results of ionic conductivity of 1.97 × 10−4 and 7.41 × 10−4 S/cm at room temperature and 80 °C, respectively, were obtained for the sample containing 55 wt% of acetic acid. Moreover, this electrolyte was found to be predominantly amorphous with transmittance in the visible region of 80% and absorbance values below 0.5 between 240 and 375 nm. Tensile test of this sample, applied up to 18 N of maximum force, resulted in strain of 2322% and Young’s modulus of 0.02 MPa. The obtained results showed that these new eco-friendly materials are promising for use as electrolytes in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baloukas B, Lamarre J-M, Martinu L (2011) Electrochromic interference filters fabricated from dense and porous tungsten oxide films. Sol Energ Mat Sol Cells 95:807–815. doi:10.1016/j.solmat.2010.10.026

    Article  CAS  Google Scholar 

  2. Sequeira CAC, Santos DMF (eds.) (2010) Polymer Electrolytes - Fundamentals and Applications. Woodhead Publishing Limited, Oxford, UK

  3. Agrawal S, Awadhia A (2004) DSC and conductivity studies on PVA based proton conducting gel electrolytes. B Mater Sci 27:523–527. doi:10.1007/BF02707280

    Article  CAS  Google Scholar 

  4. Alves R, Silva MM (2014) The influence of glycerol and formaldehyde in gelatin-based polymer electrolytes. Mol Cryst Liq Cryst 591:64–73. doi:10.1080/15421406.2013.822739

    Article  CAS  Google Scholar 

  5. Granqvist CG (2014) Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38. doi:10.1016/j.tsf.2014.02.002

    Article  CAS  Google Scholar 

  6. Silva VPR, Caliman V, Silva GG (2005) Polímeros com condutividade iônica: desafios fundamentais e potencial tecnológico. Polímeros, Ciência e Technologia 15:249–255. doi:10.1590/S0104-14282005000400008

    Article  CAS  Google Scholar 

  7. Guerrini LM, Branciforti MC, Bretas RE, de Oliveira MP (2006) Electrospinning of Aqueous Solution of Poly(vinyl alcohol). Polímeros Ciência e Tecnologia 16:286-293. doi:10.1590/S0104-14282006000400007

  8. Goodship V, Jacobs D (2009) Polyvinyl alcohol: properties and applications. Smithers Rapra Technology, Shrewsbury

    Google Scholar 

  9. Neto MJ, Sentanin F, Esperança JMSS, Medeiros MJ, Pawlicka A, de Zea BV, Silva MM (2015) Gellan gum—ionic liquid membranes for electrochromic device application. Solid State Ionics 274:64–70. doi:10.1016/j.ssi.2015.02.011

    Article  CAS  Google Scholar 

  10. Rau I, Grote J, Kajzar F, Pawlicka A (2012) DNA—novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Phys 13:853–864. doi:10.1016/j.crhy.2012.09.005

    Article  CAS  Google Scholar 

  11. García-Ochoa F, Santos V, Casas J, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotech Adv 18:549–579. doi:10.1016/S0734-9750(00)00050-1

    Article  Google Scholar 

  12. Casas JA, Santos VE, Garcı́a-Ochoa F (2000) Xanthan gum production under several operational conditions: molecular structure and rheological properties☆. Enz Microb Tech 26:282–291. doi:10.1016/S0141-0229(99)00160-X

    Article  CAS  Google Scholar 

  13. Machado BAS, Reis JHO, TVB F, Druzian JI (2012) Mapeamento tecnológico da goma xantana sob o enfoque em pedidos de patentes depositados no mundo entre 1970 a 2009. GEINTEC-Gestão, Inovação e Tecnologias 2:154–165. doi:10.7198/S2237-07222012000200006

    Article  Google Scholar 

  14. Lima E, Raphael E, Sentanin F, Rodrigues LC, Ferreira RAS, Carlos LD, Silva MM, Pawlicka A (2012) Photoluminescent polymer electrolyte based on agar and containing europium picrate for electrochemical devices. Mater Sci Eng B 177:488–493. doi:10.1016/j.mseb.2012.02.004

    Article  CAS  Google Scholar 

  15. Singh A, Narvi S, Dutta P, Pandey N (2006) External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. B Mater Sci 29:233–238

    Article  CAS  Google Scholar 

  16. Pawlicka A, Sabadini AC, Raphael E, Dragunski DC (2008) Ionic conductivity thermogravimetry measurements of starch-based polymeric electrolytes. Mol Cryst Liq Cryst 485:804–816. doi:10.1080/15421400801918138

    Article  CAS  Google Scholar 

  17. Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53:1404–1408. doi:10.1016/j.electacta.2007.04.034

    Article  CAS  Google Scholar 

  18. Pawlicka A, Vieira D, Sabadini RC (2013) Gelatin-HCl biomembranes with ionic-conducting properties. Ionics 19:1723–1731. doi:10.1007/s11581-013-0935-9

    Article  CAS  Google Scholar 

  19. Mîndroiu M, Zgârian RG, Kajzar F, Rău I, De Oliveira HCL, Pawlicka A, Tihan GT (2015) DNA-based membranes for potential applications. Ionics 21:1381–1390. doi:10.1007/s11581-014-1293-y

    Article  Google Scholar 

  20. Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet J-P (2017) Electrochemical performance of polymer electrolytes based on poly(vinyl alcohol)/poly(acrylic acid) blend and pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim Acta 240:371–378. doi:10.1016/j.electacta.2017.04.107

    Article  CAS  Google Scholar 

  21. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124:225–230. doi:10.1016/S0378-7753(03)00591-3

    Article  CAS  Google Scholar 

  22. Lopes LS, Machado GO, Pawlicka A, Donoso JP (2005) Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel electrolytes. Electrochim Acta 50:3978–3984. doi:10.1016/j.electacta.2005.02.056

    Article  CAS  Google Scholar 

  23. Dragunski DC, Pawlicka A (2002) Starch based solid polymeric electrolytes. Mol Cryst Liq Cryst 374:561–568. doi:10.1080/10587250210443

    Article  CAS  Google Scholar 

  24. Tretinnikov ON, Zagorskaya SA (2012) Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J Appl Spec 79:521–526. doi:10.1007/s10812-012-9634-y

    Article  CAS  Google Scholar 

  25. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari M (2004) Dielectric and conductivity relaxations in PVAc based polymer electrolytes. Ionics 10:129–134. doi:10.1007/BF02410321

    Article  CAS  Google Scholar 

  26. Arof AK, Osman Z, Morni NM, Kamarulzaman N, Ibrahim ZA, Muhamad MR (2001) Chitosan-based electrolyte for secondary lithium cells. J Mater Sci 36:791–793. doi:10.1023/A:1004869815261

    Article  CAS  Google Scholar 

  27. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55:1455–1459. doi:10.1016/j.electacta.2009.06.010

    Article  CAS  Google Scholar 

  28. Khiar A, Puteh R, Arof A (2006) Conductivity studies of a chitosan-based polymer electrolyte. Physica B: Cond Matter 373:23–27. doi:10.1016/j.physb.2005.10.104

    Article  CAS  Google Scholar 

  29. Robitaille C, Fauteux D (1986) Phase diagrams and conductivity characterization of some PEO-LiX electrolytes. J Electrochem Soc 133:315–325. doi:10.1149/1.2108569

    Article  CAS  Google Scholar 

  30. Mishra K, Pundir SS, Rai D (2017) Effect of polysorbate plasticizer on the structural and ion conduction properties of PEO–NH4PF6 solid polymer electrolyte. Ionics 23:105–112

    Article  CAS  Google Scholar 

  31. Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J Phys Chem A 112:8888–8895. doi:10.1021/jp801573h

    Article  CAS  Google Scholar 

  32. Carvalho LA, Andrade AR, Bueno PR (2006) Espectroscopia de impedância eletroquímica aplicada ao estudo das reações heterogêneas em ânodos dimensionalmente estáveis. Química Nova 29:796–804. doi:10.1590/S0100-40422006000400029

    Article  Google Scholar 

  33. Takahash Y, Sumita I, Tadokoro H (1973) Structural Studies of Polyethers .9. Planar zigzag modification of poly(ethylene oxide). J Polym Sci B 11:2113–2122. doi:10.1002/pol.1973.180111103

    Google Scholar 

  34. Kumar M, Sekhon S (2002) Role of plasticizer's dielectric constant on conductivity modification of PEO–NH 4 F polymer electrolytes. Europ Polym J 38:1297–1304. doi:10.1016/S0014-3057(01)00310-X

    Article  CAS  Google Scholar 

  35. Tavares FC (2015) Preparação e Caracterização de Eletrólitos Sólidos Poliméricos à base de Goma Xantana. Dissertation, Universidade Federal de Pelotas-RS, Brazil

  36. Iwaki Y, Escalona MH, Briones J, Pawlicka A (2012) Sodium alginate-based ionic conducting membranes. Mol Cryst Liq Cryst 554:221–231. doi:10.1080/15421406.2012.634329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to FAPERGS (grant 12/2239-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant 305029/2013-4) for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César O. Avellaneda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldeira, I., Lüdtke, A., Tavares, F. et al. Ecologically friendly xanthan gum-PVA matrix for solid polymeric electrolytes. Ionics 24, 413–420 (2018). https://doi.org/10.1007/s11581-017-2223-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2223-6

Keywords

Navigation