Skip to main content
Log in

Solid polymer electrolyte based on tragacanth gum-ammonium thiocyanate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Research towards solid polymer electrolytes based on biopolymers has grown extensively over the past years due to its abundance in nature, non-toxicity, low cost, and biodegradability. When compared to standard biopolymers, electrochemical study on natural gums is very limited. Therefore, in the present work, polymer electrolytes based on gum tragacanth have been prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), thermogravimetry, and transference number studies. The polymer-salt complex formation is confirmed using FTIR studies while XRD spectra reveal the amorphous nature of the polymer membranes. The highest conductivity of 9.161 × 10−3 S/cm was obtained for the film with 1 g of gum tragacanth and 0.5 g of ammonium thiocyanate. The Thermogravimetry study showed that the electrolyte is thermally stable. The transference number study confirmed that the main charge carriers are ions. The primary battery has been constructed using the prepared electrolyte, and the OCV was found to be 1.31 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

Available upon request.

References

  1. Naga Vamsi Krishna L, Kulkarni PK, Dixit M, Lavanya D, Raavi PK (2011) Brief introduction of natural gums, mucilages and their applications in novel drug delivery systems - a review. International Journal Of Drug Formulation And Research 2:54–71

    Google Scholar 

  2. Chiam-WenLiew RS (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohyd Polym 124:222–228

    Article  CAS  Google Scholar 

  3. Tiwari T, Kumar M, Srivastava N, Srivastava PC (2014) Electrical transport study of potato starch-based electrolyte system-II. Mater Sci Eng, B 182:6–13

    Article  CAS  Google Scholar 

  4. Teoh KH, Lim C-S, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95

    Article  Google Scholar 

  5. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  6. Mohanapriya S, Rambabu G, Bhat SD, Raj V (2020) Pectin based nanocomposite membranes as green electrolytes for direct methanol fuel cells. Arab J Chem 13:2024–2040

    Article  CAS  Google Scholar 

  7. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    Article  CAS  Google Scholar 

  8. Zainuddin NK, Samsudin AS (2018) Investigation on the effect of NH4Br at transport properties in k–carrageenan based biopolymer electrolytes via structural and electrical analysis. Materials Today Communications 14:199–209

    Article  CAS  Google Scholar 

  9. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55:1455–1459

    Article  CAS  Google Scholar 

  10. Zare EN, Makvandi P, Tay FR (2019) Recent progress in the industrial and biomedical applications of tragacanth gum: a review. Carbohyd Polym 212:450–467

    Article  CAS  Google Scholar 

  11. Zohuriaan MJ, Shokrolahi F (2004) Thermal studies on natural and modified gums. Polym Testing 23:575–579

    Article  CAS  Google Scholar 

  12. Pradhan SS, Sarkar A (2009) Enhancement of electrical conductivity in the gum arabica complex. Mater Sci Eng, C 29:1790–1793

    Article  CAS  Google Scholar 

  13. Mallik H, Sarkar A (2006) Electrical characterization of ion conducting biopolymeric gel complexes. J Non-Cryst Solids 352:795–800

    Article  CAS  Google Scholar 

  14. Pawlicka A, Tavares FC, D€orr DS, Cholant CM, Ely F, Santos MJL, Avellaneda CO (2019) Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim Acta 305:232–239

    Article  CAS  Google Scholar 

  15. Fattahi A, Petrini P, Munarin F, Shokoohinia Y, Golozar MA, Varshosaz J, Cristina Tanzi M (2013) Polysaccharides derived from tragacanth as biocompatible polymers and gels. J Appl Polym Sci 129(4):2092–2102

    Article  CAS  Google Scholar 

  16. Mohammad Abu Jafar Mazumder , Heather Sheardown , Amir Al-Ahmed, Functional biopolymers , Springer International Publishing

  17. Phillips GO, Williams PA (2009) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing Limited, New Delhi

    Book  Google Scholar 

  18. Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohyd Polym 101:928–940

    Article  CAS  Google Scholar 

  19. Hosaini M, Hemmati K, Ghaemy M (2016) Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. Int J Biol Macromol 82:806–815

    Article  CAS  Google Scholar 

  20. Verma C, Negi P, Pathania D, Sethi V, Gupta B (2019) Preparation of pH-sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polym Int 68:344–350

    CAS  Google Scholar 

  21. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Razavi-Nouri M (2008) Tragacanth gum-graft-polyacrylonitrile: synthesis, characterization and hydrolysis. J Polym Res 15:173–180

    Article  CAS  Google Scholar 

  22. Rahmani Z, Sahraei R, Ghaemy M (2018) Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: study of drug delivery behavior. Carbohyd Polym 194:34–42

    Article  CAS  Google Scholar 

  23. Goudar N, Vanjeri VN, Dixit S, Hiremani V, Sataraddi S, Gasti T, Vootla SK, Masti SP, Chougale RB (2020) Evaluation of multifunctional properties of gallic acid crosslinked poly(vinyl alcohol)/tragacanth gum blend films for food packaging applications. Int J Biol Macromol 158:139–149

    Article  CAS  PubMed  Google Scholar 

  24. Scalia A, Zaccagnini P, Armandi M, Latini G, Versaci D, Lanzio V, Varzi A, Passerini S, Lamberti A (2021) Tragacanth gum as green binder for sustainable water-processable electrochemical capacitor. Chemsuschem 14:356–362

    Article  CAS  PubMed  Google Scholar 

  25. Nejatian M, Abbasi S, Azarikia F (2020) Gum tragacanth: structure, characteristics and applications in foods. Int J Biol Macromol 160:846–860

    Article  CAS  PubMed  Google Scholar 

  26. Harun NI, Ali RM, Ali AMM, Yahya AMA (2013) Conductivity studies on cellulose acetate–ammonium tetrafluoroborate based polymer electrolytes. Mater Res Innovations 15:168–172

    Article  Google Scholar 

  27. Maheshwari T, Tamilarasan K, Selvasekarapandian S, Chitra R, Kiruthika S (2021) Investigation of blend biopolymer electrolytes based on Dextran-PVA with ammonium thiocyanate. J Solid State Electrochem 25:755–765

    Article  CAS  Google Scholar 

  28. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Angelo PC (2007) Vibrational and impedance spectroscopic study on PVP–NH4SCN based polymer electrolytes. Phys B 39:11–17

    Article  CAS  Google Scholar 

  29. Kora AJ, Arunachalam J (2012) Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): a dual functional reductant and stabilizer. J Nanomater 1687–4110

  30. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134(15)

  31. Kurt A (2018) Pysicochemical, rheological and structural characteristics of alcohol precipitated fraction of gum tragacanth. Food and Health 4:183–189

    Article  Google Scholar 

  32. Stuart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley

    Book  Google Scholar 

  33. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Harcourt College Publishers, New York

    Google Scholar 

  34. Ravi M, Bhavani S, Kiran Kumar K, Narasimaha Rao VVR (2013) Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sci 19:85–93

    Article  CAS  Google Scholar 

  35. Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys B 405:958–964

    Article  CAS  Google Scholar 

  36. Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199:14–20

    Article  CAS  Google Scholar 

  37. Noor NAM, Isa MIN (2019) Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int J Hydrogen Energy 44:8298–8306

    Article  CAS  Google Scholar 

  38. Shamsuri NA, Zaine SNA, Yusof YM, Yahya YZN, Shukur MF (2020) Effect of ammonium thiocyanate on ionic conductivity and thermal properties of polyvinyl alcohol–methylcellulose–based polymer electrolytes. Ionics 26:6083–6093

    Article  CAS  Google Scholar 

  39. Kulshrestha N, Gupta N (2016) Structural and electrical characterizations of 50:50 PVA: starch blend complexed with ammonium thiocyanate. Ionics 22:671–681

    Article  CAS  Google Scholar 

  40. Mohamed AS, Shukur MF, Kadir MFZ et al (2020) Ion conduction in chitosan-starch blend based polymer electrolyte with ammonium thiocyanate as charge provider. J Polym Res 27:149

    Article  CAS  Google Scholar 

  41. TanWinie, Abdul K. Arof, Sabu Thomas (2019) Polymer electrolytes characterization techniques and energy applications, Wiley-VCH publications

  42. Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(e-caprolactone). Mater Res Innovations 15:49–54

    Article  Google Scholar 

  43. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN Polymer electrolytes. Phys B 357:412–419

    Article  CAS  Google Scholar 

  44. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polymer J 42:2672–2677

    Article  CAS  Google Scholar 

  45. Samukaite-Bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A (2021) Towards supercapacitors: Cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf A Physicochem Eng Asp 5(610):125750

  46. Ramanavicius A, Genys P, Ramanaviciene A (2014) Electrochemical impedance spectroscopy based evaluation of 1, 10-phenanthroline-5, 6-dione and glucose oxidase modified graphite electrode. Electrochim Acta 10(146):659–665

    Article  CAS  Google Scholar 

  47. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN:NH4SCN polymer electrolytes. Ionics 20:1391–1398

    Article  CAS  Google Scholar 

  48. Rangasamy VS, Thayumanasundaram S, Locquet JP (2019) Solid polymer electrolytes with poly(vinyl alcohol) and piperidinium based ionic liquid for Li-ion batteries. Solid State Ionics 333:76–82

    Article  CAS  Google Scholar 

  49. Nirmala Devi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23:3377–3388

    Article  CAS  Google Scholar 

  50. Christopher Selvin P, Perumal P, Selvasekarapandian S, Monish S, Boopathi G, Leena Chandra MV (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542

    Article  CAS  Google Scholar 

  51. Ravi M, Bhavani S, Pavani Y, Narasimha Rao VVR (2013) Investigation on electrical and dielectric properties of PVP:KCLO4 Polymer electrolyte films. Indian J Pure Appl Phys 51:362–366

    CAS  Google Scholar 

  52. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-West formalism. Int J Electrochem Sci 9:7644–7659

    Google Scholar 

  53. Balaji Bhargav P, Sarada BA, Sharma AK, Rao VVRN (2010) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A Pure Appl Chem 47:131–137

    Article  CAS  Google Scholar 

  54. Noor NAM, Isa MIN (2015) Ionic conductivity and dielectric properties of CMC doped NH4SCN solid biopolymer electrolytes. Advanced Materials Research 1107:230–235

    Article  Google Scholar 

  55. Mohamed AS, Shukur MF, Kadir MFZ, Yusof YM (2020) Ion conduction in chitosan-starch blend based polymer electrolyte with ammonium thiocyanate as charge provider. J Polym Res 27:149

    Article  CAS  Google Scholar 

  56. Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2019) Characterization of biodegradable solid polymer electrolyte system based on agar-NH4Br and its comparison with NH4I. J Solid State Electrochem 23:7021

    Article  CAS  Google Scholar 

  57. Bruce Wagner J, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597

    Article  Google Scholar 

  58. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S, (2017)  Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23(10):2775–2780

    Article  CAS  Google Scholar 

  59. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid state proton battery. J Power Sources 16:702–706

    Article  CAS  Google Scholar 

  60. Karimi N, Mohammadifar MA (2014) Role of water soluble and water swellable fractions of gum tragacanth on stability and characteristic of model oil in water emulsion. Food Hydrocolloids 37:124–133

    Article  CAS  Google Scholar 

  61. Islam NU, Amin R, Shahid M, Amin M, Zaib S, Iqbal J (2017) A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement Altern Med 17:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Agarwal RC, Hashmi SA, Pandey GP (2007) Electrochemical cell performance studies on all-solid-state battery using nano-composite polymer electrolyte membrane. Ionics 13:295–298

    Article  CAS  Google Scholar 

  63. Mishra K, Hashmi SA, Rai DK (2014) Studies on a proton battery using gel polymer electrolyte. High Perform Polym 26(6):672–676

    Article  CAS  Google Scholar 

  64. Samsudin AS, Isa MI (2016) Conductivity study on plasticized solid bio-electrolytes CMC-NH4Br and application In Solid-State Proton Batteries. J Teknologi 13:78(6–5)

  65. Nyuk CM, Isa MI (2017)(2018) Solid biopolymer electrolytes based on carboxymethyl cellulose for use in coin cell proton batteries. J Sustain Sci Manag 42–8

  66. Yusof YM, Illias HA, Shukur MF, Kadir MFZ (2017) Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics 23(3):681–697

    Article  CAS  Google Scholar 

  67. Muthukrishnan M, Shanthi C, Selvasekarapandian S, Manjuladevi R, Perumal P, Selvin PC (2019) Synthesis and characterization of pectin-based biopolymer electrolyte for electrochemical applications. Ionics 25(1):203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the facilities provided by Madras Christian College under college with Potential of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan S..

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

I., J., K., V., S., K. et al. Solid polymer electrolyte based on tragacanth gum-ammonium thiocyanate. J Solid State Electrochem 25, 2371–2383 (2021). https://doi.org/10.1007/s10008-021-05016-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05016-7

Keywords

Navigation