Skip to main content
Log in

Gelatin-HCl biomembranes with ionic-conducting properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Gelatin-HCl protonic gel polymer electrolytes were obtained by crosslinking with formaldehyde in the presence of hydrochloric acid and glycerol as plasticizer and characterized in present study. The ionic conductivity measurements revealed the best value of 5.35 × 10−5 S cm−1 at room temperature. Factorial design analysis showed that influence of glycerol is more pronounced than influence of acid on ionic conductivity values. Moreover, the 90 % transparent membranes evidenced a linear increase of ionic conductivity values of 5.35 × 10−5 S cm−1 at 26.5 °C to 5.77 × 10−4 S cm−1 at 82.8 °C following Arrhenius type mechanism of charge mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yalpani M (1988) Polysaccharides, synthesis, modifications and structure/property relations. Elsevier, Amsterdam

    Google Scholar 

  2. Gimenez AJ, Yanez-Limon JM, Seminario JM (2011) Paper-based photoconductive infrared sensor. J Phys Chem C 115:18829–18834

    Article  CAS  Google Scholar 

  3. Marcondes RFMS, D’Agostini PS, Ferreira J, Girotto EM, Pawlicka A, Dragunski DC (2010) Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ionics 181:586–591

    Article  CAS  Google Scholar 

  4. Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  5. Fuentes S, Retuert PJ, Gonzalez G (2003) Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane). Electrochim Acta 48:2015–2019

    Article  CAS  Google Scholar 

  6. Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. J Phys Chem A 112:8888–8895

    Article  CAS  Google Scholar 

  7. Noor ISM, Majid SR, Arof AK, Djurado D, Pawlicka A (2012) Characteristics of gellan gum—LiCF3SO3 polymer electrolyte. Solid State Ionics 225:649–653

    Article  CAS  Google Scholar 

  8. Iwaki Y, Hernandez Escalona M, Briones JR, Pawlicka A (2012) Sodium alginate-based ionic conducting membranes. Mol Cryst Liq Cryst 554:221–231

    Article  CAS  Google Scholar 

  9. Pawlicka A, Donoso JP (2010) Polymer electrolytes based on natural polymers. In: Sequeira CAC, Santos DMF (eds) Polymer electrolytes: properties and applications. Woodhead Publishing Limited, Cambridge, pp 95–128

    Google Scholar 

  10. Arvanitoyannis IS (2002) Formation and properties of collagen and gelatin films and coatings. CRC Press, Boca Raton

    Google Scholar 

  11. Gennadios A, Mchugh TH, Weller CL, Krochta JM (1994) Edible coatings and films based on proteins. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M (eds) Edible coatings and films to improve food quality. Technomic Pub. Co, Lancaster, pp 210–278

    Google Scholar 

  12. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  Google Scholar 

  13. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385

    Article  CAS  Google Scholar 

  14. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  15. Samoc A, Samoc M, Grote JG, Miniewicz A, Luther-Davies B (2006) Optical properties of deoxyribonucleic acid (DNA) polymer host. In: JG Grote, F Kajzar, M Lindgren (eds.) Optical materials in defence systems technology III, vol. 6401, pp. U25–U34

  16. Pawlicka A, Sabadini AC, Raphael E, Dragunski DC (2008) Ionic conductivity thermogravimetry measurements of starch-based polymeric electrolytes. Mol Cryst Liq Cryst 485:804–816

    Article  CAS  Google Scholar 

  17. Fuentes S, Retuert PJ, Gonzalez G (2007) Lithium ion conductivity of molecularly compatibilized chitosan–poly(aminopropyltriethoxysilane)–poly(ethylene oxide) nanocomposites. Electrochim Acta 53:1417–1421

    Article  CAS  Google Scholar 

  18. Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  19. Vieira DF, Pawlicka A (2010) Optimization of performances of gelatin/LiBF4-based polymer electrolytes by plasticizing effects. Electrochim Acta 55:1489–1494

    Article  CAS  Google Scholar 

  20. Cha EH, Macfarlane DR, Forsyth M, Lee CW (2004) Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochim Acta 50:335–338

    Article  CAS  Google Scholar 

  21. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH Publishers Inc, New York

  22. Chung SH, Heitjans P, Winter R, Bzaucha W, Florjanczyk Z, Onoda Y (1998) Enhancement of ionic conductivity by the addition of plasticizers in cationic monoconducting polymer electrolytes. Solid State Ionics 112:153–159

    Article  CAS  Google Scholar 

  23. Galliard T (1987) Starch: properties and potentials. Wiley, New York

  24. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17:479–483

    Article  CAS  Google Scholar 

  25. Torres JA (1994) Edible films and coatings from proteins. Marcel Dekker, New York

    Google Scholar 

  26. Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante A (2005) Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll 19:899–907

    Article  CAS  Google Scholar 

  27. Bergo P, Sobral PJA (2007) Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocoll 21:1285–1289

    Article  CAS  Google Scholar 

  28. de Carvalho RA, Grosso CRF (2004) Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocoll 18:717–726

    Article  Google Scholar 

  29. Vieira DF, Avellaneda CO, Pawlicka A (2009) A.C impedance, X-ray diffraction and DSC investigation on gelatin based-electrolyte with LiClO4 (vol 485, pg 843, 2008). Mol Cryst Liq Cryst 506:178

    Article  CAS  Google Scholar 

  30. Al-Kahlout A, Vieira D, Avellaneda CO, Leite ER, Aegerter MA, Pawlicka A (2010) Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16:13–19

    Article  CAS  Google Scholar 

  31. Kozlov PV, Burdygina GI (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer Bull 24:651–666

    Article  CAS  Google Scholar 

  32. Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105

    Article  CAS  Google Scholar 

  33. Przyluski J, Wieczorek W (1989) Increasing the conductivity of polymer solid electrolytes—a review. Solid State Ionics 36:165–169

    Article  CAS  Google Scholar 

  34. Barros NB, Scarminio IS, Bruns RE (1995) Planejamento e otimização de experimentos. Editora da UNICAMP, Campinas

    Google Scholar 

  35. Carvalho LM, Guegan P, Cheradame H, Gomes AS (2000) Variation of the mesh size of PEO-based networks filled with TFSILi: from an Arrhenius to WLF type conductivity behavior. Europ Polym J 36:401–409

    Article  CAS  Google Scholar 

  36. Takahashi Y (1973) J Polym Sci 11:213

    Google Scholar 

  37. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) All solid-state electrochromic devices with gelatin-based electrolyte. Sol Energ Mat Sol Cells 92:228–233

    Article  CAS  Google Scholar 

  38. Morita M, Araki F, Kashiwamura K, Yoshimoto N, Ishikawa M (2000) Ionic structure and conductance behavior of plasticized polymeric electrolytes containing multivalent cations. Electrochim Acta 45:1335–1340

    Article  CAS  Google Scholar 

  39. Pawlicka A, Mattos RI, Tambelli CE, Silva IDA, Magon CJ, Donoso JP (2013) Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. J Membrane Sci 429:190–196

    Article  CAS  Google Scholar 

  40. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Europ Polym J 42:2672–2677

    Article  CAS  Google Scholar 

  41. van den Bosch E, Gielens C (2003) Gelatin degradation at elevated temperature. Inter J Biol Macromol 32:129–138

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to FAPESP, CAPES and CNPq for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pawlicka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlicka, A., Vieira, D.F. & Sabadini, R.C. Gelatin-HCl biomembranes with ionic-conducting properties. Ionics 19, 1723–1731 (2013). https://doi.org/10.1007/s11581-013-0935-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0935-9

Keywords

Navigation