Skip to main content

Advertisement

Log in

The evolving role of MRI in oncohaematological disorders

Il ruolo della RM nelle malattie oncoematologiche

  • Musculoskeletal Radiology Radiologia Muscoloscheletrica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has opened new possibilities to current diagnostic radiology in the evaluation of bone marrow. Compared with other imaging modalities, MRI is the only technique able to directly visualise bone marrow with its different components of red and yellow marrow. Other advantages of MRI are high-contrast resolution and multiplanar view, as well as extensive coverage of the skeleton with whole-body MRI (WBMRI). However, specificity of signal alterations of bone marrow is low. Therefore, MRI findings need to be integrated with clinical and laboratory findings as well as with haematological and oncological evaluation. MRI provides information that effectively aids diagnosis, staging and follow-up of various bone marrow disorders. There is increasing interest in the capabilities of MRI in the evaluation of bone marrow, in particular of haematological malignancies. According to some authors much work remains to be done to improve sensitivity and specificity of MRI in order to define the real clinical value of this imaging modality in the multidisciplinary management of patients with a haematological malignancy. This article presents recent developments and perspectives in the use of MRI in oncohaematological diseases.

Riassunto

La risonanza magnetica (RM) ha aperto nuove possibilità alla radiologia diagnostica per la valutazione del midollo osseo. A differenza delle altre modalità di imaging, la RM è la sola tecnica capace di visualizzare direttamente il midollo osseo, nelle sue componenti di midollo rosso e giallo. Altri vantaggi della RM sono rappresentati dall’elevata risoluzione di contrasto e dalla visione multiplanare, assieme ad un’ampia copertura dello scheletro, fino alla RM “whole body” (WBMRI). Tuttavia la specificità delle alterazioni di segnale è bassa, perciò i reperti di RM devono essere integrati con la clinica e i risultati di laboratorio assieme alla valutazione ematologica ed oncologica. La RM fornisce informazioni che aiutano la diagnosi, lo staging ed il follow-up di diverse malattie del midollo osseo. Vi è un crescente interesse per la capacità della RM di valutare il midollo osseo, particolarmente nelle neoplasie ematologiche. Secondo alcuni autori “molto lavoro deve ancora essere fatto” per migliorare la sensibilità e la specificità della RM e per definire il reale valore clinico di questa modalità di imaging nella gestione multidisciplinare del paziente con una neoplasia ematologica. Questo articolo presenta i recenti sviluppi e le prospettive nell’uso della RM nelle patologie oncoematologiche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Vande Berg BC, Malghem J, Lecouvet FE et al (1998) Magnetic resonance imaging of normal bone marrow. Eur Radiol 8:1327–1334

    Article  Google Scholar 

  2. Vande Berg BC, Lecouvet FE, Michaux L et al (1998) Magnetic resonance imaging of the bone marrow in haematological malignancies. Eur Radiol 8:1335–1344

    Article  Google Scholar 

  3. Vanel D, Dromain C, Tardivon A (2000) MRI of bone marrow disorders. Eur Radiol 10:224–229

    Article  PubMed  Google Scholar 

  4. Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  5. Moulopoulos LA, Dimopoulos MA (1997) Magnetic resonance imaging of the bone marrow in haematologic malignancies. Blood 90:2127–2147

    PubMed  Google Scholar 

  6. Vande Berg BC, Malghem J, Lecouvet FE et al (1998) Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiology 27:529–545

    Article  Google Scholar 

  7. Walker RE, Eustace SJ (2001) Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications. Semin Musculoskelet Radiol 5:5–20

    Article  PubMed  Google Scholar 

  8. Eustace SE, Nelson J (2004) Whole body magnetic resonance imaging. BMJ 328:1387–1388

    Article  PubMed  Google Scholar 

  9. Schmidt GP, Schoenberg SO, Reiser MF et al (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55:33–40

    Article  PubMed  Google Scholar 

  10. Johnston C, Brennan S, Ford S et al (2006) Whole body MR imaging: Applications in oncology. EJSO 32:239–246

    Article  PubMed  Google Scholar 

  11. Czervionke LF, Berquist TH (1997) Imaging of the spine. Techniques of MR imaging. Orthop Clin North Am 28:583–616

    Article  PubMed  Google Scholar 

  12. Siegel MJ, Luker GD. (1996) Bone marrow imaging in children. MRI Clin North Am 4:771–796

    Google Scholar 

  13. Babyn PS, Ranson M, McCarville ME (1998) Normal bone marrow. Signal characteristics and fatty conversion. MRI Clin North Am 6:473–495

    Google Scholar 

  14. Foster K, Chapman S, Johnson K (2004) MRI of the marrow in the paediatric skeleton. Clin Radiol 59:651–673

    Article  PubMed  Google Scholar 

  15. Mirowitz SA, Apicella P, Reinus WR et al (1994) MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol 162:215–221

    PubMed  Google Scholar 

  16. Chan JHM, Peh WCG, Tsui EYK, Chau LF et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficient. BJR 75:207–214

    PubMed  Google Scholar 

  17. Baur A, Dietrich O, Reiser M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–1708

    Article  PubMed  Google Scholar 

  18. Park SW, Lee JH, Ehara S et al (2004) Single shot fast spin echo diffusion-weighted MR imaging of the spine. Is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? J Clin Imaging 28:102–108

    Article  Google Scholar 

  19. Schick F, Einsele H, Bongers H et al (1993) Leukemic red bone marrow changes assessed by magnetic resonance imaging and localized 1H spectroscopy. Ann Hematol 66:3–13

    Article  PubMed  Google Scholar 

  20. Jensen KE, Jensen M, Grundtvig P et al (1990) Localized in vivo proton spectroscopy of the bone marrow in patients with leukemia. Magn Reson Imaging 8:779–789

    Article  PubMed  Google Scholar 

  21. Schick F, Einsele H, Kost R et al (1994) Hematopoietic reconstitution after bone marrow transplantation: assessment with MR imaging and H-1 localized spectroscopy. J Magn Reson Imaging 4:71–78

    Article  PubMed  Google Scholar 

  22. Lin CS, Fertikh D, Davis B et al (2000) 2D CSI proton MR spectroscopy of human spinal vertebra: feasibility studies. J Magn Reson Imaging 11:287–293

    Article  PubMed  Google Scholar 

  23. Kugel H, Jung C, Schulte O et al (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  PubMed  Google Scholar 

  24. Montazel JL, Divine M, Lepage E et al (2003) Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology 229:703–709

    Article  PubMed  Google Scholar 

  25. Moulopoulos LA, Maris TG, Papanikolaou N et al (2003) Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol 14:152–158

    Article  PubMed  Google Scholar 

  26. Baur A, Stabler A, Bartl R et al (1997) MRI gadolinium enhancement of bone marrow: age-related changes in normals and diffuse neoplastic infiltration. Skeletal Radiol 26:414–418

    Article  PubMed  Google Scholar 

  27. Rahmouni A, Montazel JL, Divine M et al (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative disease: dynamic gadolinium-enhanced MR imaging. Radiology 229:710–717

    Article  PubMed  Google Scholar 

  28. Daldrup-Link HE, Rummeny EJ, Ihssen B et al (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular marrow. Eur Rad 12:1557–1566

    Article  Google Scholar 

  29. Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959

    Article  PubMed  Google Scholar 

  30. Ladd SC, Zenge M, Antoch G et al (2006) Whole-body MR diagnostic concepts. Rofo 178:763–770

    PubMed  Google Scholar 

  31. Hargaden G, O’Connel MJ, Kavanagh E et al (2003) Current concepts in whole-body imaging using turbo short tau inversion recovery MR imaging. AJM Am J Roentgenol 180:247–252

    Google Scholar 

  32. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    PubMed  Google Scholar 

  33. Durie BGM, Salmon SE (1975) A clinical staging system for multiple myeloma. (Correlation of measured meyloma cell mass with presenting clinical features, response to treatment and survival). Cancer 36:842–854

    Article  PubMed  Google Scholar 

  34. Lecouvet F, Malghem J, Michaux L et al (1999) Skeletal survey in advanced multiple myeloma: radiographic versus MRI survey. Br J Haematol 106:35–39

    Article  PubMed  Google Scholar 

  35. Baur A, Stabler A, Nagel D et al (2002) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95:1334–1345

    Article  PubMed  Google Scholar 

  36. Baur-Melnyk A, Resser M (2004) Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography. Radiologe 44:874–881

    Article  PubMed  Google Scholar 

  37. Bredella MA, Steinbach L, Caputo G et al (2005) Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol 184:1199–1204

    PubMed  Google Scholar 

  38. Baur-Melnyk A, Buhmann S, Dürr HR et al (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 55:56–63

    Article  PubMed  Google Scholar 

  39. Durie BG (2006) The role of anatomic and functional staging in myeloma: Description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543

    Article  PubMed  Google Scholar 

  40. Lecouvet FE, Vande Berg BC, Michaux L et al (1998) Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow imaging. Radiology 209:653–660

    PubMed  Google Scholar 

  41. Lecouvet FE, Dechambre S, Malghem J et al (2001) Bone marrow transplantation in patients with multiple myeloma: prognostic significance of MR imaging. AJR Am J Roentgenol 176:91–96

    PubMed  Google Scholar 

  42. Ballon D, Watts R, Dyke JP et al (2004) Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med 52:1234–1238

    Article  PubMed  Google Scholar 

  43. Baur A, Bartl R, Pellengahr C et al (2004) Neovascularization of bone marrow in patients with diffuse multiple myeloma. A correlative study of magnetic resonance imaging and histopathologic findings. Cancer 101:2599–2604

    Article  PubMed  Google Scholar 

  44. Krishman A, Shirkhoda A, Tehranzadeh I et al (2003) Primary bone lymphoma: radiographic-MR imaging correlations. Radiographics 23:1371–1383

    Article  Google Scholar 

  45. Iizuka-Mikami M, Nagai K, Yoshida K et al (2004) Detection of bone marrow and extramedullary involvement in patients with non-Hodgkin’s lymphoma by whole-body MRI: comparison with bone and 67Ga scintigraphies. Eur Radiol 14:1074–1081

    Article  PubMed  Google Scholar 

  46. Kellenberger CJ, Miller SF, Khan M et al (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841

    Article  PubMed  Google Scholar 

  47. Schmidt GP, Haug AR, Schoenberg SO et al (2006) Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16:1216–1225

    Article  PubMed  Google Scholar 

  48. Takagi S, Tanaka O (2002) Magnetic resonance imaging of femoral marrow predicts outcome in adult patients with acute myeloid leukaemia in complete remission. Br J Haematol 117:70–75

    Article  PubMed  Google Scholar 

  49. Islam A, Catovsky D, Galton D (1980) Histological study of bone marrow regeneration following chemotherapy for acute myeloid leukaemia and chronic granulocytic leukaemia in blast transformation. Br J Haematol 45:535–541

    PubMed  Google Scholar 

  50. Casamassima F, Ruggiero C, Caramella D et al (1989) Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation. Blood 73:1677–1681

    PubMed  Google Scholar 

  51. Otake S, Mayr NA, Ueda T et al (2002) Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field? Radiology 222:179–183

    Article  PubMed  Google Scholar 

  52. Fletcher BD, Wall JE, Hana SL (1993) Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 189:745–751

    PubMed  Google Scholar 

  53. Ciray I, Lindman H, Astrom GK et al (2003) Effect of colony-stimulating factors (G-CSF)-supported chemotherapy on MR imaging of normal red bone marrow in breast cancer patients with focal bone matastases. Acta Radiol 44:472–484

    Article  PubMed  Google Scholar 

  54. Hartman RP, Sundaram M, Okuno SH et al (2004) Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 183:645–653

    PubMed  Google Scholar 

  55. Kellenberger CJ, Miller SF, Khan M et al (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14:1829–1841

    Article  PubMed  Google Scholar 

  56. Kellenberger CJ, Epelman M, Miller S et al (2004) Fast stir whole-body MR imaging in children. Radiographics 24:1317–1330

    Article  PubMed  Google Scholar 

  57. Pozzi Mucelli RS, Ricci C, Cova M (1990) Risonanza magnetica del midollo osseo. Radiol Med 80:409–423

    Google Scholar 

  58. Angtuaco EJC, Fassas ABT, Walker R et al (2004) Multiple myeloma: clinical review and diagnostic imaging. Radiology 231:11–23

    Article  PubMed  Google Scholar 

  59. Uetani M, Hashmi R, Hayashi K (2004) Malignant and benign compression fractures: differentiation and diagnostic pitfalls on MRI. Clin Radiol 59:124–131

    Article  PubMed  Google Scholar 

  60. Tokuda O, Hayashi N, Matsunaga N (2004) MRI of bone tumors: Fast STIR imaging as a substitute for T1-weighted contrast-enhanced fat-suppressed spinecho imaging. J Magn Reson Imaging 19:475–481

    Article  PubMed  Google Scholar 

  61. Eito K, Waka S, Naoko N, Atsuko H (2004) Vertebral neoplastic fractures: assessment by dual-phase chemical shift imaging. J Magn Reson Imaging 20:1020–1024

    Article  PubMed  Google Scholar 

  62. Golg GE, Han E, Stainsby J et al (2004) Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351

    Google Scholar 

  63. Daldrup-Link HE, Ridelius M, Piontek G et al (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MRI equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Tamburrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamburrini, O., Cova, M.A., Console, D. et al. The evolving role of MRI in oncohaematological disorders. Radiol med 112, 703–721 (2007). https://doi.org/10.1007/s11547-007-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-007-0174-0

Key words

Parole chiave

Navigation