Skip to main content
Log in

Whole-body MRI at high field: technical limits and clinical potential

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This review seeks to clarify the most important implications of higher magnetic field strength for clinical examinations of the whole body. An overview is provided on the resulting advantages and disadvantages for anatomical, functional and biochemical magnetic resonance examinations in different regions of the body. It is demonstrated that susceptibility-dependent imaging, chemical shift selective (e.g., fat-suppressed) imaging, and spectroscopic techniques clearly gain from higher field strength. Problems due to shorter wavelength and higher radio frequency energy deposition at higher field strength are reported, especially in examinations of the body trunk. Thorax examinations provided sufficient homogeneity of the radio frequency field for common examination techniques in most cases, whereas abdominal and pelvic imaging was often hampered by undesired dielectric effects. Currently available and potential future strategies to overcome related limitations are discussed. Whole-body MRI at higher field strength currently leads to clearly improved image quality using a variety of established sequence types and for examination of many body regions. But some major problems at higher field strength have to be solved before high-field magnetic resonance systems can really replace the well-established and technically developed magnetic resonance systems operating at 1.5 T for each clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y (2000) Description of parallel imaging in MRI using multiple coils. Magn Reson Med 44:495–499

    Google Scholar 

  3. Paschal CB, Morris HD (2004) K-space in the clinic. J Magn Reson Imaging 19:145–159

    Article  Google Scholar 

  4. De Zwart JA, Ledden PJ, van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn Reson Med 51:22–26

    Article  Google Scholar 

  5. Marzola P, Osculati F, Sbarbati A (2003) High field MRI in preclinical research. Eur J Radiol 48:165–170

    Article  Google Scholar 

  6. Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10:63–78

    Google Scholar 

  7. Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60

    Article  Google Scholar 

  8. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456

    Article  Google Scholar 

  9. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281

    Article  Google Scholar 

  10. Rotter M, Berg A, Langenberger H, Grampp S, Imhof H, Moser E (2001) Autocorrelation analysis of bone structure. J Magn Reson Imaging 14(1):87–93

    Article  Google Scholar 

  11. Uematsu H, Dougherty L, Takahashi M, Ohno Y, Nakatsu M, Song HK, Ferrari VA, Gefter WB, Schnall MD, Hatabu H (2001) Pulmonary MR angiography with contrast agent at 4 Tesla: a preliminary result. Magn Reson Med 46:1028–1030

    Google Scholar 

  12. Dougherty L, Connick TJ, Mizsei G (2001) Cardiac imaging at 4 Tesla. Magn Reson Med 45:176–178

    Article  Google Scholar 

  13. Klarhofer M, Csapo B, Balassy C, Szeles JC, Moser E (2001) High-resolution blood flow velocity measurements in the human finger. Magn Reson Med 45:716–719

    Article  Google Scholar 

  14. Szeles JC, Csapo B, Klarhofer M, Balassy C, Hoda R, Berg A, Roden M, Polterauer P, Waldhausl W, Moser E (2001) In vivo magnetic resonance micro-imaging of the human toe at 3 Tesla. Magn Reson Imaging 19:1235–1238

    Article  Google Scholar 

  15. Csapo B, Szeles J, Helbich TH, Klarhofer M, Balassy C, Pammer J, Obermair A (2002) Histopathologic correlation of high-resolution magnetic resonance imaging of human cervical tissue samples at 3 Tesla: validation of a technique. Invest Radiol 37:381–385

    Article  Google Scholar 

  16. Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G, Gilmore J, Bullitt E (2003) Practical consideration for 3T imaging. Magn Reson Imaging Clin N Am 11:615–639

    Google Scholar 

  17. Uematsu H, Dougherty L, Takahashi M, Ohno Y, Nakatsu M, Schnall MD, Hatabu H (2003) Abdominal imaging at 4 T MR system: a preliminary result. Eur J Radiol 47:161–163

    Article  Google Scholar 

  18. Price SJ, Burnet NG, Donovan T, Green HA, Pena A, Antoun NM, Pickard JD, Carpenter TA, Gillard JH (2003) Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol 58:455–462

    Article  CAS  PubMed  Google Scholar 

  19. Norris D (2003) High field human imaging. J Magn Reson Imaging 18:519–529

    Article  PubMed  Google Scholar 

  20. Hormann M, Traxler H, Ba-Ssalamah A, Mlynarik V, Shodaj-Baghini M, Kubiena H, Trattnig S (2003) Correlative high-resolution MR-anatomic study of sciatic, ulnar, and proper palmar digital nerve. Magn Reson Imaging 21:879–885

    Article  Google Scholar 

  21. Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442

    Article  Google Scholar 

  22. Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM (2004) MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 11:857–862

    Article  Google Scholar 

  23. Uematsu H, Takahashi M, Dougherty L, Hatabu H (2004) High field body MR imaging—preliminary experiences. J Clin Imaging 28:159–162

    Article  Google Scholar 

  24. Karlberg M, Annertz M, Magnusson M (2004) Acute vestibular neuritis visualized by 3-T magnetic resonance imaging with high-dose gadolinium. Arch Otolaryngol Head Neck Surg 130:229–232

    Article  Google Scholar 

  25. Huber ME, Kozerke S, Pruessmann KP, Smink J, Boesiger P (2004) Sensitivity-encoded coronary MRA at 3T. Magn Reson Med 52:221–227

    Article  Google Scholar 

  26. Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 Tesla. Magn Reson Med 51:655–660

    Article  Google Scholar 

  27. Fuetterer JJ, Scheenen TW, Huisman HJ, Klomp DW, van Dorsten FA, Hulsbergen-van de Kaa CA, Witjes JA, Heerschap A, Barentsz JO (2004) Initial experience of 3 Tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol 39:671–680

    Article  Google Scholar 

  28. Graf H, Schick F, Claussen CD, Seemann MD (2004) MR visualization of the inner ear structures: comparison of 1.5 Tesla and 3 Tesla images. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:17–20

    Article  Google Scholar 

  29. Baudendistel KT, Heverhagen JT, Knopp MV (2004) Clinical MR at 3 Tesla: current status. Radiologe 44:11–18

    Article  CAS  PubMed  Google Scholar 

  30. Lenk S, Ludescher B, Martirosan P, Schick F, Claussen CD, Schlemmer HP (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:664–667

    Article  Google Scholar 

  31. Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; initial experience (1). Acad Radiol 11:863–877

    Article  Google Scholar 

  32. Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol. DOI 10.1007/s00330-004-2548-1

  33. Hoult DI (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imag 12:46–67

    Article  CAS  Google Scholar 

  34. Michaeli S, Garwood M, Zhu XH, DelaBarre L, Andersen P, Adriany G, Merkle H, Ugurbil K, Chen W (2002) Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr–Purcell spin echoes at 4T and 7T. Magn Reson Med 47:629–633

    Article  Google Scholar 

  35. Ethofer T, Mader I, Seeger U, Helms G, Erb M, Grodd W, Ludolph A, Klose U (2003) Magn Reson Med 50:1296–1301

    Article  Google Scholar 

  36. Bezelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Google Scholar 

  37. Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46:6–12

    Google Scholar 

  38. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    CAS  PubMed  Google Scholar 

  39. Posse S, Kemna LJ, Elghahwagi B, Wiese S, Kiselev VG (2001) Effect of graded hypo- and hypercapnia on fMRI contrast in visual cortex: quantification of T2* changes by multiecho EPI. Magn Reson Med 46:264–271

    Article  Google Scholar 

  40. Reimer P, Muller M, Marx C, Wiedermann D, Muller R, Rummeny EJ, Ebert W, Shamsi K, Peters PE (1998) T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555 A: dependence on field strength and plasma concentration—preliminary clinical experience with dynamic T1-weighted MR imaging. Radiology 209:831–836

    CAS  PubMed  Google Scholar 

  41. Huppertz A, Rohrer M (2004) Gadobutrol, a highly concentrated MR imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast enhanced MR angiography and perfusion imaging. Eur Radiol Suppl 14(Suppl 5):M12–M18

    Article  Google Scholar 

  42. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 37:293–301

    Google Scholar 

  43. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735

    Article  Google Scholar 

  44. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR True-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361

    Article  Google Scholar 

  45. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    Article  Google Scholar 

  46. Hasumi M, Suzuki K, Taketomi A, Matsui H, Yamamoto T, Ito K, Kurokawa K, Aoki J, Endo K, Yamanaka H (2003) The combination of multi-voxel MR spectroscopy with MR imaging improve the diagnostic accuracy for localization of prostate cancer. Anticancer Res 23:4223–4227

    Google Scholar 

  47. Schmitt M, Feiweier T, Horger W, Krueger G, Schoen L, Lazar R, Kiefer B (2004) Improved uniformity of RF-distribution in clinical whole body—imaging at 3T by means of dielectric pads. In: Proceedings of the 12th annual meeting of ISMRM, p. 197

  48. Vaughan JT, Adriany G, Snyder CJ, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K (2004) Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52:851–859

    Article  Google Scholar 

  49. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114

    Google Scholar 

  50. Kangarlu A, Shellock FG, Chakeres DW (2003) 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom. J Magn Reson Imaging 17:220–226

    Article  Google Scholar 

  51. Graf H, Lauer UA, Berger A, Schick F (2005) RF interactions with metallic instruments and implants get more prominent at 3 Tesla—an in-vitro study. Magn Reson Imaging (accepted for publication)

  52. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Ugurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  Google Scholar 

  53. Hattori N, Abe K, Sakoda S, Sawada T (2001) Proton MR spectroscopic study at 3 Tesla glutamate/glutamine in Alzheimer’s disease. NeuroReport 13:183–186

    Google Scholar 

  54. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769

    Article  Google Scholar 

  55. Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. NeuroImage 21:1762–1771

    Article  Google Scholar 

  56. Kim DS, Garwood M (2003) High-field magnetic resonance techniques for brain research. Curr Opin Neurobiol 13:612–619

    Article  Google Scholar 

  57. Hennig J, Speck O, Koch MA, Weiller C (2003) Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging 18:1–15

    Article  Google Scholar 

  58. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    Article  Google Scholar 

  59. Schwindt W, Kugel H, Bachmann R, Kloska S, Allkemper T, Maintz D, Pfleiderer B, Tombach B, Heindel W (2003) Magnetic resonance imaging protocols for examination of the neurocranium at 3T. Eur Radiol 13:2170–2179

    Article  CAS  PubMed  Google Scholar 

  60. Allkemper T, Schwindt W, Maintz D, Heindel W, Tombach B (2004) Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0 T. Eur Radiol 14:1000–1004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank all contributors from several research groups working on the 3-T whole-body system in Tübingen, which was financed by the Deutsche Forschungsgemeinschaft (Th 812/1-1). The images and spectra presented in this review article were recorded and prepared with the help of Michael Fenchel, Hansjörg Graf, Sabine Lenk, Matthias Lichy, Jürgen Machann, Petros Martirosian, Stephan Miller, Heinz-Peter Schlemmer, Günter Steidle and Beate Wietek. The Chairman of the Department of Diagnostic Radiology of the University Clinic of Tübingen, Claus D. Claussen, is acknowledged for continuous support. Many experimental and clinical studies at 3 T were supported by members of Siemens Medical Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Schick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schick, F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15, 946–959 (2005). https://doi.org/10.1007/s00330-005-2678-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2678-0

Keywords

Navigation