Skip to main content

Advertisement

Log in

A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress–strain relationship using force–deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress–strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density–strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress–strain model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aerts P, De Clercq D (1993) Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. J Sports Sci 11:449–461. doi:10.1080/02640419308730011

    Article  CAS  PubMed  Google Scholar 

  2. Aerts P, Ker RF, De Clercq D et al (1995) The mechanical properties of the human heel pad: a paradox resolved. J Biomech 28:1299–1308

    Article  CAS  PubMed  Google Scholar 

  3. Aerts P, Ker RF, de Clercq D, Ilsley DW (1996) The effects of isolation on the mechanics of the human heel pad. J Anat 188(Pt 2):417–423

    PubMed  PubMed Central  Google Scholar 

  4. Bennett MB, Ker RF (1990) The mechanical properties of the human subcalcaneal fat pad in compression. J Anat 171:131–138

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Challis JH, Murdoch C, Winter SL (2008) Mechanical properties of the human heel pad: a comparison between populations. J Appl Biomech 24:377–381

    Google Scholar 

  6. Chao CYL, Zheng Y-P, Huang Y-P, Cheing GL-Y (2010) Biomechanical properties of the forefoot plantar soft tissue as measured by an optical coherence tomography-based air-jet indentation system and tissue ultrasound palpation system. Clin Biomech (Bristol, Avon) 25:594–600. doi:10.1016/j.clinbiomech.2010.03.008

    Article  Google Scholar 

  7. Chatzistergos PE, Naemi R, Sundar L et al (2014) The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes. J Diabet Complicat 28:488–493

    Article  Google Scholar 

  8. Cole GK, Nigg BM, van Den Bogert AJ, Gerritsen KGM (1996) The clinical biomechanics award paper 1995 Lower extremity joint loading during impact in running. Clin Biomech (Bristol, Avon) 11:181–193

    Article  Google Scholar 

  9. Erdemir A, Viveiros ML, Ulbrecht JS, Cavanagh PR (2006) An inverse finite-element model of heel-pad indentation. J Biomech 39:1279–1286. doi:10.1016/j.jbiomech.2005.03.007

    Article  PubMed  Google Scholar 

  10. Gefen A (2003) Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys 25:491–499. doi:10.1016/S1350-4533(03)00029-8

    Article  PubMed  Google Scholar 

  11. Gefen A, Megido-Ravid M, Itzchak Y (2001) In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech 34:1661–1665

    Article  CAS  PubMed  Google Scholar 

  12. Gerritsen KG, van den Bogert AJ, Nigg BM (1995) Direct dynamics simulation of the impact phase in heel-toe running. J Biomech 28:661–668

    Article  CAS  PubMed  Google Scholar 

  13. Gilchrist LA, Winter DA (1996) A two-part, viscoelastic foot model for use in gait simulations. J Biomech 29:795–798

    Article  CAS  PubMed  Google Scholar 

  14. Gilchrist LA, Winter DA (1997) A multisegment computer simulation of normal human gait. IEEE Trans Rehabil Eng 5:290–299

    Article  CAS  PubMed  Google Scholar 

  15. Hsu TC, Wang CL, Shau YW et al (2000) Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus. Diabet Med 17:854–859

    Article  CAS  PubMed  Google Scholar 

  16. Hsu T, Lee Y, Shau Y (2002) Biomechanics of the heel pad for type 2 diabetic patients. Clin Biomech 17:291–296

    Article  Google Scholar 

  17. Hsu C-C, Tsai W-C, Shau Y-W et al (2007) Altered energy dissipation ratio of the plantar soft tissues under the metatarsal heads in patients with type 2 diabetes mellitus: a pilot study. Clin Biomech (Bristol, Avon) 22:67–73. doi:10.1016/j.clinbiomech.2006.06.009

    Article  Google Scholar 

  18. Hsu C-C, Tsai W-C, Hsiao T-Y et al (2009) Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin Biomech (Bristol, Avon) 24:682–686. doi:10.1016/j.clinbiomech.2009.06.005

    Article  Google Scholar 

  19. Jahss MH, Michelson JD, Desai P et al (1992) Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13:233–242

    Article  CAS  PubMed  Google Scholar 

  20. Jørgensen U, Bojsen-Møller F (1989) Shock absorbency of factors in the shoe/heel interaction—with special focus on role of the heel pad. Foot Ankle 9:294–299

    Article  PubMed  Google Scholar 

  21. Ledoux WR, Blevins JJ (2007) The compressive material properties of the plantar soft tissue. J Biomech 40:2975–2981. doi:10.1016/j.jbiomech.2007.02.009

    Article  PubMed  Google Scholar 

  22. Miller RH, Hamill J (2009) Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts. Comput Methods Biomech Biomed Engin 12:481–490. doi:10.1080/10255840802695437

    Article  PubMed  Google Scholar 

  23. Miller-Young JE, Duncan NA, Baroud G (2002) Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech 35:1523–1531

    Article  PubMed  Google Scholar 

  24. Mullins L (1948) Effect of stretching on the properties of rubber. Rubber Chem Technol 21:281–300. doi:10.5254/1.3546914

    Article  CAS  Google Scholar 

  25. Naemi R, Chockalingam N (2013) Mathematical models to assess foot-ground interaction: an overview. Med Sci Sports Exerc 45:1524–1533. doi:10.1249/MSS.0b013e31828be3a7

    Article  PubMed  Google Scholar 

  26. Natali N, Fontanella CG, Carniel EL (2010) Constitutive formulation and analysis of heel pad tissues mechanics. Med Eng Phys 32:516–522. doi:10.1016/j.medengphy.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  27. Natali N, Fontanella CG, Carniel EL, Young JM (2011) Biomechanical behaviour of heel pad tissue experimental testing, constitutive formulation, and numerical modelling. Proc Inst Mech Eng Part H J Eng Med 225:449–459. doi:10.1177/09544119JEIM851

    Article  CAS  Google Scholar 

  28. Pai S, Ledoux WR (2010) The effect of target strain error on plantar tissue stress. J Biomech Eng 132:071001. doi:10.1115/1.4001398

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pai S, Ledoux WR (2011) The quasi-linear viscoelastic properties of diabetic and non-diabetic plantar soft tissue. Ann Biomed Eng 39:1517–1527. doi:10.1007/s10439-011-0263-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peña E, Peña J, Doblaré M (2009) On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int J Solids Struct 46:1727–1735

    Article  Google Scholar 

  31. Rome K, Webb P, Unsworth A, Haslock I (2001) Heel pad stiffness in runners with plantar heel pain. Clin Biomech (Bristol, Avon) 16:901–905

    Article  CAS  Google Scholar 

  32. Scott SH, Winter DA (1993) Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J Biomech 26:1091–1104

    Article  CAS  PubMed  Google Scholar 

  33. Tong J, Lim C, Goh O (2003) Technique to study the biomechanical properties of the human calcaneal heel pad. Foot 13:83–91. doi:10.1016/S0958-2592(02)00149-9

    Article  Google Scholar 

  34. Wearing SC, Smeathers JE, Yates B et al (2009) Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain. Clin Biomech (Bristol, Avon) 24:397–402. doi:10.1016/j.clinbiomech.2009.01.002

    Article  Google Scholar 

  35. Whittle MW (1999) Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 10:264–275

    Article  CAS  PubMed  Google Scholar 

  36. Zheng YP, Choi YK, Wong K et al (2000) Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system. Ultrasound Med Biol 26:451–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Directorate-General for Research and Innovation (EC) through DiabSmart project, which was funded under Industry Academia Partnerships and Pathways Programme (FP7-PEOPLE-2011-IAPP, GA 285985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Naemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naemi, R., Chatzistergos, P.E. & Chockalingam, N. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Med Biol Eng Comput 54, 341–350 (2016). https://doi.org/10.1007/s11517-015-1316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1316-5

Keywords

Navigation