Skip to main content
Log in

A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Internal strain is known to be one of the contributors to plantar soft tissue damage. However, due to challenges related to measurement techniques, there is a paucity of research investigating the strain within the plantar soft tissue during daily weight-bearing activities. Therefore, the main aim of this study was to develop a non-invasive method for predicting heel pad strain during loading. An ultrasound indentation technique along with a mathematical model was employed to calculate visco-hyperelastic structural coefficients from the results of cyclic-dynamic indentation and stress-relaxation tests. Subject-specific structural coefficients of heel pads were calculated from twenty participants along with the assessment of plantar pressure. The average difference between the predicted and the measured force during the cyclic-dynamic indentation test was only 5.8%. Moreover, the average difference between the predicted and the in vivo strain during walking was 14%. No statistically significant correlation was observed between maximum strain and peak plantar pressure during walking; indicating that the measurement of strain along with plantar pressure can improve our understanding of the mechanical behaviour of the plantar soft tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Atlas, E., Z. Yizhar, and A. Gefen. The diabetic foot load monitor: a portable device for real-time subject-specific measurements of deep plantar tissue stresses during gait. J. Med. Device. 2:011005, 2008.

    Article  Google Scholar 

  2. Behforootan, S., P. Chatzistergos, N. Chockalingam, and R. Naemi. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad with implications for assessing the risk of mechanical trauma. J. Mech. Behav. Biomed. Mater. 68:287–295, 2017.

    Article  PubMed  Google Scholar 

  3. Behforootan, S., P. Chatzistergos, R. Naemi, and N. Chockalingam. Finite element modelling of the foot for clinical applications: a systematic review. Med. Eng. Phys. 39:1–11, 2017.

    Article  PubMed  Google Scholar 

  4. Bennett, P., A. Stocks, and D. Whittam. Analysis of risk factors for neuropathic foot ulceration in diabetes mellitus. J Am Pod. Med Assoc 86:335–337, 1996.

    Google Scholar 

  5. Boulton, A. J. The diabetic foot: a global view. Diabetes. Metab. Res. Rev. 16:2–5, 2000.

    Article  Google Scholar 

  6. Chatzistergos, P. E., R. Naemi, and N. Chockalingam. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear. Med. Eng. Phys. 37:531–538, 2015.

    Article  PubMed  Google Scholar 

  7. Chatzistergos, P. E., R. Naemi, L. Sundar, A. Ramachandran, and N. Chockalingam. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes. J. Diabetes Complicat. 28:488–493, 2014.

    Article  PubMed  Google Scholar 

  8. Chen, W.-M., T. Lee, P. V.-S. Lee, J. W. Lee, and S.-J. Lee. Effects of internal stress concentrations in plantar soft-tissue–a preliminary three-dimensional finite element analysis. Med. Eng. Phys. 32:324–331, 2010.

    Article  PubMed  Google Scholar 

  9. Chokhandre, S., J. P. Halloran, A. J. van den Bogert, and A. Erdemir. A three-dimensional inverse finite element analysis of the heel pad. J. Biomech. Eng. 134:031002, 2012.

    Article  PubMed  Google Scholar 

  10. Crawford, F., M. Inkster, J. Kleijnen, and T. Fahey. Predicting foot ulcers in patients with diabetes: a systematic review and meta-analysis. QJM 100:65–86, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Davis, B. L. Medical hypotheses foot ulceration : hypotheses concerning shear and vertical forces acting on adjacent regions of skin. Med. Hypotheses 40:44–47, 1993.

    Article  CAS  PubMed  Google Scholar 

  12. Delbridge, L., G. Ctercteko, C. Fowler, T. S. Reeve, and L. P. Le Quesne. The aetiology of diabetic neuropathic ulceration of the foot. Br. J. Surg. 72:1–6, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Dinh, T. L., and A. Veves. A review of the mechanisms implicated in the pathogenesis of the diabetic foot 4:154–159, 2005.

    Google Scholar 

  14. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.

    Article  PubMed  Google Scholar 

  15. Gefen, A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med. Eng. Phys. 25:491–499, 2003.

    Article  PubMed  Google Scholar 

  16. Gefen, A., and E. Linder-Ganz. Diffusion of ulcers in the diabetic foot is promoted by stiffening of plantar muscular tissue under excessive bone compression. Orthopade 33:999–1012, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Gefen, A., M. Megido-Ravid, and Y. Itzchak. In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J. Biomech. 34:1661–1665, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hsu, Y.-C., Y.-W. Gung, S.-L. Shih, C.-K. Feng, S.-H. Wei, C.-H. Yu, and C.-S. Chen. Using an optimization approach to design an insole for lowering plantar fascia stress–a finite element study. Ann. Biomed. Eng. 36:1345–1352, 2008.

    Article  PubMed  Google Scholar 

  19. Hsu, T.-C., Y.-S. Lee, and Y.-W. Shau. Biomechanics of the heel pad for type 2 diabetic patients. Clin. Biomech. (Bristol, Avon) 17:291–296, 2002.

    Article  Google Scholar 

  20. Hsu, T. C., W. C. Tsai, T. Y. Hsiao, F. Y. Tseng, Y. W. Shau, C. L. Wang, and S. C. Lin. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin. Biomech. 24:682–686, 2009.

    Article  Google Scholar 

  21. Klaesner, J. W., M. K. Hastings, D. Zou, C. Lewis, and M. J. Mueller. Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy. Arch. Phys. Med. Rehabil. 83:1796–1801, 2002.

    Article  PubMed  Google Scholar 

  22. Landsman, A. S., D. F. Meaney, R. S. Cargill, E. J. Macarak, and L. E. Thibault. 1995 William J. Stickel Gold Award. High strain rate tissue deformation. A theory on the mechanical etiology of diabetic foot ulcerations. J. Am. Podiatr. Med. Assoc. 85:519–527, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Lavery, L. A. Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch. Intern. Med. 158:157–162, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Loerakker, S., E. Manders, G. J. Strijkers, K. Nicolay, F. P. T. Baaijens, D. L. Bader, and C. W. J. Oomens. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. J. Appl. Physiol. 111:1168–1177, 2011.

    Article  CAS  PubMed  Google Scholar 

  25. Loerakker, S., A. Stekelenburg, G. J. Strijkers, J. J. M. Rijpkema, F. P. T. Baaijens, D. L. Bader, K. Nicolay, and C. W. J. Oomens. Temporal effects of mechanical loading on deformation-induced damage in skeletal muscle tissue. Ann. Biomed. Eng. 38:2577–2587, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller-young, J. E., N. A. Duncan, and G. Baroud. Material properties of the human calcaneal fat pad in compression: experiment and theory. J. Biomech. 35:1523–1531, 2002.

    Article  PubMed  Google Scholar 

  27. Mueller, M. Etiology evaluation, and treatment of the neuropathic foot. Crit Rev Phys Rehabil Med 3:309, 1992.

    Google Scholar 

  28. Naemi, R., P. P. Chatzistergos, and N. Chockalingam. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Med. Biol. Eng. Comput. 54:341–350, 2016.

    Article  PubMed  Google Scholar 

  29. Naemi, R., P. Chatzistergos, L. Sundar, N. Chockalingam, and A. Ramachandran. Differences in the mechanical characteristics of plantar soft tissue between ulcerated and non-ulcerated foot. J. Diabetes Complicat. 30(7):1293–1299, 2016.

    Article  PubMed  Google Scholar 

  30. Naemi, R., P. Chatzistergos, S. Suresh, L. Sundar, N. Chockalingam, and A. Ramachandran. Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer? Diabetes Res. Clin. Pract. 126:182–191, 2017.

    Article  CAS  PubMed  Google Scholar 

  31. Natali, A. N., C. G. Fontanella, and E. L. Carniel. Constitutive formulation and analysis of heel pad tissues mechanics. Med. Eng. Phys. 32:516–522, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Petre, M., A. Erdemir, and P. R. Cavanagh. An MRI-compatible foot-loading device for assessment of internal tissue deformation. J. Biomech. 41:470–474, 2008.

    Article  PubMed  Google Scholar 

  33. Petre, M., A. Erdemir, V. P. Panoskaltsis, T. A. Spirka, and P. R. Cavanagh. Optimization of nonlinear hyperelastic coefficients for foot tissues using a magnetic resonance imaging deformation experiment. J. Biomech. Eng. 135:61001–61012, 2013.

    Article  PubMed  Google Scholar 

  34. Stekelenburg, A., D. Gawlitta, D. L. Bader, and C. Oomens. Deep tissue injury: how deep is our understanding? J. Phys. Med. Rehabil. 89:1410–1413, 2008.

    Article  Google Scholar 

  35. Tao, K., D. Wang, C. Wang, X. Wang, A. Liu, C. J. Nester, and D. Howard. An in vivo experimental validation of a computational model of human foot. J. Bionic Eng. 6:387–397, 2009.

    Article  Google Scholar 

  36. Yarnitzky, G., Z. Yizhar, and A. Gefen. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis. J. Biomech. 39:2673–2689, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Zabihollahy, F., B. M. Trindade, Y. Ono, and E. D. Lemaire. Continuous monitoring of mechanical properties of plantar soft tissue for diabetic patients using wearable ultrasonic and force sensors. IEEE Trans. 2016.

Download references

Acknowledgment

Authors would like to acknowledge the Staffordshire University Research Studentship which supported the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Behforootan.

Additional information

Associate Editor Arash Kheradvar oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behforootan, S., Chatzistergos, P.E., Chockalingam, N. et al. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living. Ann Biomed Eng 45, 2750–2761 (2017). https://doi.org/10.1007/s10439-017-1918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1918-1

Keywords

Navigation