Skip to main content
Log in

The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to characterize the viscoelastic behavior of diabetic and non-diabetic plantar soft tissue at six ulcer-prone/load-bearing locations beneath the foot to determine any changes that may play a role in diabetic ulcer formation and subsequent amputation in this predisposed population. Four older diabetic and four control fresh frozen cadaveric feet were each dissected to isolate plantar tissue specimens from the hallux, first, third, and fifth metatarsals, lateral midfoot, and calcaneus. Stress relaxation experiments were used to quantify the viscoelastic tissue properties by fitting the data to the quasi-linear viscoelastic (QLV) theory using two methods, a traditional frequency-insensitive approach and an indirect frequency-sensitive approach, and by measuring several additional parameters from the raw data including the rate and amount of overall relaxation. The stress relaxation response of both diabetic and non-diabetic specimens was unexpectedly similar and accordingly few of the QLV parameters for either fit approach and none of raw data parameters differed. Likewise, no differences were found between plantar locations. The accuracy of both fit methods was comparable, however, neither approach predicted the ramp behavior. Further, fit coefficients varied considerably from one method to the other, making it hard to discern meaningful trends. Future testing using alternate loading modes and intact feet may provide more insight into the role that time-dependent properties play in diabetic foot ulceration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abramowitch, S. D., and S. L. Woo. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. 126:92–97, 2004.

    Article  PubMed  Google Scholar 

  2. Bennett, M. B., and R. F. Ker. The mechanical properties of the human subcalcaneal fat pad in compression. J. Anat. 171:131–138, 1990.

    PubMed  CAS  Google Scholar 

  3. Bilston, L. E., and L. E. Thibault. The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24:67–74, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Bonifasi-Lista, C., S. P. Lake, M. S. Small, and J. A. Weiss. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthop. Res. 23:67–76, 2005.

    Article  PubMed  Google Scholar 

  5. CDCP. National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States. Atlanta, GA: Centers for Disease Control and Prevention, 2007.

    Google Scholar 

  6. Chen, R.-J., C.-C. K. Lin, and M.-S. Ju. In situ biomechanical properties of normal and diabetic nerves: an efficient quasi-linear viscoelastic approach. J. Biomech. 43:1118–1124, 2010.

    Article  PubMed  Google Scholar 

  7. Cheung, Y. Y., M. Doyley, T. B. Miller, F. Kennedy, F. Lynch, Jr., J. S. Wrobel, K. Paulson, and J. Weaver. Magnetic resonance elastography of the plantar fat pads: preliminary study in diabetic patients and asymptomatic volunteers. J. Comput. Assist. Tomogr. 30:321–326, 2006.

    Article  PubMed  Google Scholar 

  8. Cowley, M. S., E. J. Boyko, J. B. Shofer, J. H. Ahroni, and W. R. Ledoux. Foot ulcer risk and location in relation to prospective clinical assessment of foot shape and mobility among persons with diabetes. Diabetes Res. Clin. Pract. 82:226–232, 2008.

    Article  PubMed  Google Scholar 

  9. Doehring, T. C., E. O. Carew, and I. Vesely. The effect of strain rate on the viscoelastic response of aortic valve tissue: a direct-fit approach. Ann. Biomed. Eng. 32:223–232, 2004.

    Article  PubMed  Google Scholar 

  10. Duenwald, S. E., R. Vanderby, and R. S. Lakes. Constitutive equations for ligament and other soft tissue: evaluation by experiment. Acta Mech. 205:23–33, 2009.

    Article  Google Scholar 

  11. Elliott, D. M., P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Iozzo, and L. J. Soslowsky. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605, 2003.

    Article  PubMed  Google Scholar 

  12. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, 1993.

    Google Scholar 

  13. Funk, J. R., G. W. Hall, J. R. Crandall, and W. D. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. J. Biomech. Eng. 122:15–22, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Gefen, A., M. Megido-Ravid, M. Azariah, Y. Itzchak, and M. Arcan. Integration of plantar soft tissue stiffness measurements in routine MRI of the diabetic foot. Clin. Biomech. 16:921–925, 2001.

    Article  CAS  Google Scholar 

  15. Gimbel, J. A., J. J. Sarver, and L. J. Soslowsky. The effect of overshooting the target strain on estimating viscoelastic properties from stress relaxation experiments. J. Biomech. Eng. 126:844–848, 2004.

    Article  PubMed  Google Scholar 

  16. Harris, M. I., R. Klein, T. A. Welborn, and M. W. Knuiman. Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care 15:815–819, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby, Jr. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32:306–312, 2004.

    Article  PubMed  Google Scholar 

  18. Hsu, T. C., Y. S. Lee, and Y. W. Shau. Biomechanics of the heel pad for type 2 diabetic patients. Clin. Biomech. 17:291–296, 2002.

    Article  Google Scholar 

  19. Hsu, C. C., W. C. Tsai, T. Y. Hsiao, F. Y. Tseng, Y. W. Shau, C. L. Wang, and S. C. Lin. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin. Biomech. 24:682–686, 2009.

    Article  Google Scholar 

  20. Hsu, C. C., W. C. Tsai, Y. W. Shau, K. L. Lee, and C. F. Hu. Altered energy dissipation ratio of the plantar soft tissues under the metatarsal heads in patients with type 2 diabetes mellitus: a pilot study. Clin. Biomech. 22:67–73, 2007.

    Article  Google Scholar 

  21. Hsu, T. C., C. L. Wang, Y. W. Shau, F. T. Tang, K. L. Li, and C. Y. Chen. Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus. Diabet. Med. 17:854–859, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, C. Y., V. M. Wang, E. L. Flatow, and V. C. Mow. Temperature-dependent viscoelastic properties of the human supraspinatus tendon. J. Biomech. 42:546–549, 2009.

    Article  PubMed  Google Scholar 

  23. Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30:1005–1013, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Isakov, E., N. Budoragin, S. Shenhav, I. Mendelevich, A. Korzets, and Z. Susak. Anatomic sites of foot lesions resulting in amputation among diabetics and non-diabetics. Am. J. Phys. Med. Rehabil. 74:130–133, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Klaesner, J. W., M. K. Hastings, D. Zou, C. Lewis, and M. J. Mueller. Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy. Arch. Phys. Med. Rehabil. 83:1796–1801, 2002.

    Article  PubMed  Google Scholar 

  26. Kwan, M. K., T. H. Lin, and S. L. Woo. On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J. Biomech. 26:447–452, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Lavery, L. A., S. A. Vela, J. G. Fleischli, D. G. Armstrong, and D. C. Lavery. Reducing plantar pressure in the neuropathic foot. A comparison of footwear. Diabetes Care 20:1706–1710, 1997.

    Article  PubMed  CAS  Google Scholar 

  28. Ledoux, W. R., and J. J. Blevins. The compressive material properties of the plantar soft tissue. J. Biomech. 40:2975–2981, 2007.

    Article  PubMed  Google Scholar 

  29. Ledoux, W. R., and H. J. Hillstrom. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture 15:1–9, 2002.

    Article  PubMed  Google Scholar 

  30. Ledoux, W. R., D. F. Meaney, and H. J. Hillstrom. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties. J. Biomech. Eng. 126:831–837, 2004.

    Article  PubMed  Google Scholar 

  31. Miller-Young, J. E., and N. A. Duncan. Material Properties of the Human Calcaneal Fat Pad in Compression: Validation Experiments. 4th World Congress of Biomechanics, Calgary, AB, 2002.

  32. Miller-Young, J. E., N. A. Duncan, and G. Baroud. Material properties of the human calcaneal fat pad in compression: experiment and theory. J. Biomech. 35:1523–1531, 2002.

    Article  PubMed  Google Scholar 

  33. Natali, A. N., C. G. Fontanella, and E. L. Carniel. Constitutive formulation and analysis of heel pad tissues mechanics. Med. Eng. Phys. 32:516–522, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Pai, S., and W. R. Ledoux. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue. J. Biomech. 43:1754–1760, 2010.

    Article  PubMed  Google Scholar 

  35. Pai, S., and W. R. Ledoux. The effect of target strain error on plantar tissue stress. J. Biomech. Eng. 132:071001, 2010.

    Article  PubMed  Google Scholar 

  36. Pena, E., J. A. Pena, and M. Doblare. On modelling nonlinear viscoelastic effects in ligaments. J. Biomech. 41:2659–2666, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Piaggesi, A., M. Romanelli, E. Schipani, F. Campi, A. Magliaro, F. Baccetti, and R. Navalesi. Hardness of plantar skin in diabetic neuropathic feet. J. Diabetes Complicat. 13:129–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  38. Provenzano, P. P., R. S. Lakes, D. T. Corr, and R. Vanderby, Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model. Mechanobiol. 1:45–57, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. Puso, M. A., and J. A. Weiss. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120:62–70, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2009.

    Google Scholar 

  41. Rousseau, E. P., A. A. Sauren, M. C. van Hout, and A. A. van Steenhoven. Elastic and viscoelastic material behaviour of fresh and glutaraldehyde-treated porcine aortic valve tissue. J. Biomech. 16:339–348, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Sauren, A. A., and E. P. Rousseau. A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung. J. Biomech. Eng. 105:92–95, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Schmid, H., M. P. Nash, A. A. Young, and P. J. Hunter. Myocardial material parameter estimation—a comparative study for simple shear. J. Biomech. Eng. 128:742–750, 2006.

    Article  PubMed  CAS  Google Scholar 

  44. Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  PubMed  Google Scholar 

  45. Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medial collateral ligament. J. Biomech. Eng. 103:293–298, 1981.

    Article  PubMed  CAS  Google Scholar 

  46. Woo, S. L., B. R. Simon, S. C. Kuei, and W. H. Akeson. Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102:85–90, 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institutes of Health grant 1R01 DK75633-03 and the Department of Veterans Affairs, RR&D Service grant A4843C. The authors would also like to thank Jane Shofer, M.S., for the statistical analysis, Michael Fassbind, M.S., for equipment design, and Paul Vawter for assisting with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Ledoux.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, S., Ledoux, W.R. The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue. Ann Biomed Eng 39, 1517–1527 (2011). https://doi.org/10.1007/s10439-011-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0263-z

Keywords

Navigation