Skip to main content
Log in

Investigation of the optimum heel pad stiffness: a modeling study

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Due to the controversy regarding the criterion for diagnosing heel pad (HP) pathology based on evaluating the state of the heel pad stiffness (HPS), this paper intended to apply modeling to understand the influence of the HPS on the mechanical responses of the HP at heelstrike during locomotion, in an attempt to investigate the optimum HPS in terms of the health-related mechanical responses. Two different models, a finite element model and a classical mechanical model, were used to simulate the mechanical responses (force loading and deformation) experienced by the HP at heelstrike. Both excessive force loading and deformation are believed to be detrimental to the heel pad. In the simulation, the corresponding force loading, deformation and net effect (the adding of the normalized force loading and deformation) were calculated for each HPS value. Two models found consistent trends that the stiffer the HP, the greater the force loading and the lower the deformation. In contrast, a softer HP experienced a lower force loading and a greater deformation. Both the force loading and deformation were at medium levels and the net effect was minimal at a HPS value between the highest and lowest values used in the simulation. The modeling result suggested that the optimum HPS should be in a state at which both the force loading and deformation were at medium levels and the net effect was minimal, in terms of the health-related mechanical responses. The abnormal level of HPS, either too high or too low, may correlate to respective pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett MB, Ker RF (1990) The mechanical properties of the human subcalcaneal fat pad in compression. J Anat 171:131–138

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Naemi R, Chockalingam N (2013) Mathematical models to assess foot-ground interaction: an overview. Med Sci Sports Exerc 45(8):1524–1533

    Article  PubMed  Google Scholar 

  3. Rodgers MM (1995) Dynamic foot biomechanics. J Orthop Sports Phys Ther 21(6):306–316

    Article  CAS  PubMed  Google Scholar 

  4. Rome K (1998) Mechanical properties of the heel pad: current theory and review of the literature. Foot 8(4):179–185

    Article  Google Scholar 

  5. Blechschmidt E (1982) The structure of the calcaneal padding. Foot Ankle 2(5):260–283

    Article  CAS  PubMed  Google Scholar 

  6. Jahss MH, Kummer F, Michelson JD (1992) Investigations into the fat pads of the sole of the foot: heel pressure studies. Foot Ankle 13(5):227–232

    Article  CAS  PubMed  Google Scholar 

  7. Jahss MH, Michelson JD, Desai P, Kaye R, Kummer F, Buschman W, Watkins F, Reich S (1992) Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13(5):233–242

    Article  CAS  PubMed  Google Scholar 

  8. Buschmann WR, Hudgins LC, Kummer F, Desai P, Jahss MH (1993) Fatty acid composition of normal and atrophied heel fat pad. Foot Ankle 14(7):389–394

    Article  CAS  PubMed  Google Scholar 

  9. Jahss MH (1991) Disorders of the foot and ankle: medical and surgical management. Wb Saunders, Philadelphia

    Google Scholar 

  10. Miller-Young JE, Duncan NA, Baroud G (2002) Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech 35(12):1523–1531

    Article  PubMed  Google Scholar 

  11. Fontanella CG, Matteoli S, Carniel EL, Wilhjelm JE, Virga A, Corvi A, Natali AN (2012) Investigation on the load-displacement curves of a human healthy heel pad: in vivo compression data compared to numerical results. Med Eng Phys 34(9):1253–1259

    Article  CAS  PubMed  Google Scholar 

  12. Jørgensen U (1985) Achillodynia and loss of heel pad shock absorbency. Am J Sports Med 13(2):128–132

    Article  PubMed  Google Scholar 

  13. Spears IR, Miller-Young JE (2006) The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability. Clin Biomech 21(2):204–212

    Article  Google Scholar 

  14. Kwan RLC, Zheng YP, Cheing GLY (2010) The effect of aging on the biomechanical properties of plantar soft tissues. Clin Biomech 25(6):601–605

    Article  Google Scholar 

  15. Naemi R, Chatzistergos P, Suresh S, Sundar L, Chockalingam N, Ramachandran A (2017) Can plantar soft tissue mechanics enhance prognosis of diabetic foot ulcer? Diabetes Res Clin Pract 126:182–191

    Article  CAS  PubMed  Google Scholar 

  16. Natali AN, Fontanella CG, Carniel EL (2012) A numerical model for investigating the mechanics of calcaneal fat pad region. J Mech Behav Biomed Mater 5(1):216–223

    Article  CAS  PubMed  Google Scholar 

  17. Kinoshita H, Francis PR, Murase T, Kawai S, Ogawa T (1996) The mechanical properties of the heel pad in elderly adults. Eur J Appl Physiol Occup Physiol 73(5):404–409

    Article  CAS  PubMed  Google Scholar 

  18. Rome K (1997) Anthropometric and biomechanical risk factors in the development of plantar heel pain—a review of the literature. Phys Ther Rev 2(3):123–134

    Article  Google Scholar 

  19. Telfer S, Woodburn J, Turner DE (2014) Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography. Gait Posture 39(1):328–332

    Article  PubMed  Google Scholar 

  20. Kuhns JC (1949) Changes in elastic adipose tissue. J Bone Joint Surg 31A(3):541–547

    Article  CAS  PubMed  Google Scholar 

  21. Rome K, Webb P, Unsworth A, Haslock I (2001) Heel pad stiffness in runners with plantar heel pain. Clin Biomech 16(10):901–905

    Article  CAS  Google Scholar 

  22. Challis JH, Murdoch C, Winter SL (2008) Mechanical properties of the human heel pad: a comparison between populations. J Appl Biomech 24(4):377–381

    Article  Google Scholar 

  23. Alshami AM, Souvlis T, Coppieters MW (2008) A review of plantar heel pain of neural origin: differential diagnosis and management. Man Ther 13(2):103–111

    Article  PubMed  Google Scholar 

  24. Lin CY, Lin CC, Chou YC, Chen PY, Wang CL (2015) Heel pad stiffness in plantar heel pain by shear wave elastography. Ultrasound Med Biol 41(11):2890–2898

    Article  PubMed  Google Scholar 

  25. Ozdemir H, Söyüncü Y, Ozgörgen M, Dabak K (2003) Effects of changes in heel fat pad thickness and elasticity on heel pain. J Am Podiatr Med Assoc 94(1):47–52

    Article  Google Scholar 

  26. Prichasuk S (1994) The heel pad in plantar heel pain. J Bone Joint Surg Br 76(1):140–142

    Article  CAS  PubMed  Google Scholar 

  27. Tong J, Lim CS, Goh OL (2003) Technique to study the biomechanical properties of the human calcaneal heel pad. Foot 13(2):83–91

    Article  Google Scholar 

  28. Hsu TC, Wang CL, Tsai WC, Kuo JK, Tang FT (1998) Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch Phys Med Rehabil 79(9):1101–1104

    Article  CAS  PubMed  Google Scholar 

  29. Jørgensen U, Larsen E, Varmarken JE (1989) The HPC-device: a method to quantify the heel pad shock absorbency. Foot Ankle 10(2):93–98

    Article  PubMed  Google Scholar 

  30. Tsai WC, Wang CL, Hsu TC, Hsieh FJ, Tang FT (1999) The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle 20(10):663–668

    Article  CAS  PubMed  Google Scholar 

  31. Niu WX, Wang LJ, Feng TN, Jiang CH, Fan YB, Zhang M (2013) Effects of bone Young’s modulus on finite element analysis in the lateral ankle biomechanics. Appl Bionics Biomech 10(4):189–195

    Article  Google Scholar 

  32. Pal S (2014) Design of artificial human joints & organs. Springer, New York

    Book  Google Scholar 

  33. Aerts P, Clercq DD (1993) Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. J Sports Sci 11(5):449–461

    Article  CAS  PubMed  Google Scholar 

  34. Ker RF, Bennett MB, Alexander RM, Kester RC (1989) Foot strike and the properties of the human heel pad. Proc Inst Mech Eng H 203(4):191–196

    Article  CAS  PubMed  Google Scholar 

  35. Perry J (1983) Anatomy and biomechanics of the hindfoot. Clin Orthop Relat Res 177:9–15

    Google Scholar 

  36. Liddle D, Rome K, Howe T (2000) Vertical ground reaction forces in patients with unilateral plantar heel pain—a pilot study. Gait Posture 11(1):62–66

    Article  CAS  PubMed  Google Scholar 

  37. Rome K, Campbell R, Flint A, Haslock I (2002) Heel pad thickness—a contributing factor associated with plantar heel pain in young adults. Foot Ankle 23(2):142–147

    Article  PubMed  Google Scholar 

  38. Whittle MW (1999) Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 10(3):264–275

    Article  CAS  PubMed  Google Scholar 

  39. Alcántara E, Forner A, Ferrús E, García AC, Ramiro J (2002) Influence of age, gender, and obesity on the mechanical properties of the heel pad under walking impact conditions. J Appl Biomech 18(4):345–356

    Article  Google Scholar 

  40. Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8(64):1521–1549

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gefen A, Megido-Ravid M, Itzchak Y (2001) In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech 34(12):1661–1665

    Article  CAS  PubMed  Google Scholar 

  42. Wearing SC, Smeathers JE, Yates B, Urry SR, Dubois P (2009) Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain. Clin Biomech 24(4):397–402

    Article  Google Scholar 

  43. Chen YN, Chang CW, Li CT, Chang CH, Lin CF (2015) Finite element analysis of plantar fascia during walking: a quasi-static simulation. Foot Ankle 36(1):90–97

    Article  PubMed  Google Scholar 

  44. Goske S, Erdemir A, Petre M, Budhabhatti S, Cavanagh PR (2006) Reduction of plantar heel pressures: insole design using finite element analysis. J Biomech 39(13):2363–2370

    Article  PubMed  Google Scholar 

  45. Spears IR, Miller-Young JE, Sharma J, Ker RF, Smith FW (2007) The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation. J Biomech 40(12):2774–2780

    Article  CAS  PubMed  Google Scholar 

  46. Pai S, Ledoux WR (2011) The quasi-linear viscoelastic properties of diabetic and non-diabetic plantar soft tissue. Ann Biomed Eng 39(5):1517–1527

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Yu Lin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Chuang, HJ. & Cortes, D.H. Investigation of the optimum heel pad stiffness: a modeling study. Australas Phys Eng Sci Med 40, 585–593 (2017). https://doi.org/10.1007/s13246-017-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-017-0565-z

Keywords

Navigation