Skip to main content
Log in

Polyhydroxyalkanoates: Current applications in the medical field

  • Review
  • Published:
Frontiers in Biology

Abstract

Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao G, Mitragotri S, Tong S (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng, 15: 253–282

    Article  CAS  PubMed  Google Scholar 

  • Basnett P, Ching K Y, Stolz M, Knowles J C, Boccaccini A R, Smith C, Locke I C, Keshavarz T, Roy I (2013). Novel Poly (3-hydroxyoctanoate)/Poly (3-hydroxybutyrate) blends for medical applications. Reactive and Functional Polymers, 73(10): 1340–1348

    Article  CAS  Google Scholar 

  • Bennett R G (1988). Selection of wound closure materials. J Am Acad Dermatol, 18(4 Pt 1): 619–637

    Article  CAS  PubMed  Google Scholar 

  • Borkenhagen M, Stoll R C, Neuenschwander P, Suter UW, Aebischer P (1998). In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials, 19(23): 2155–2165

    Article  CAS  PubMed  Google Scholar 

  • Brigham C J, Sinskey A J (2012). Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind, 1: 52–60

    Google Scholar 

  • Chen G Q, Wu Q (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33): 6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Liang S, Thouas G A (2013). Elastomeric biomaterials for tissue engineering. Prog Polym Sci, 38(3-4): 584–671

    Article  CAS  Google Scholar 

  • Chen W, Tong Y W (2012). PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater, 8(2): 540–548

    Article  CAS  PubMed  Google Scholar 

  • Chuah J A, Yamada M, Taguchi S, Sudesh K, Doi Y, Numata K (2013). Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym Degrad Stabil, 98(1): 331–338

    Article  CAS  Google Scholar 

  • Dinjaski N, Fernández-Gutiérrez M, Selvam S, Parra-Ruiz F J, Lehman S M, San Román J, García E, García J L, García A J, Prieto M A (2014). PHACOS, a functionalized bacterial polyester with bactericidal activity against methicillin-resistant Staphylococcus aureus. Biomaterials, 35(1): 14–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995). Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14): 4822–4828

    Article  CAS  Google Scholar 

  • Entholzner E, Mielke L, Pichlmeier R, Weber F, Schneck H (1995). [EEG changes during sedation with gamma-hydroxybutyric acid]. Anaesthesist, 44(5): 345–350

    Article  CAS  PubMed  Google Scholar 

  • Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Sass M, Hopt U T, Schmitz K P (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13): 2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Gardel M, Schwarz U (2010). Cell-substrate interactions. J Phys Condens Matter, 22(19): 190301

    Article  PubMed  Google Scholar 

  • Geiger B, Spatz J P, Bershadsky A D (2009). Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol, 10(1): 21–33

    Article  CAS  PubMed  Google Scholar 

  • Gogolewski S, Jovanovic M, Perren S M, Dillon J G, Hughes M K (1993). Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res, 27(9): 1135–1148

    Article  CAS  PubMed  Google Scholar 

  • Hazari A, Johansson-Ruden G, Junemo-Bostrom K, Ljungberg C, Terenghi G, Green C, Wiberg M (1999a) A new resorbable wraparound implant as an alternative nerve repair technique. Journal of Hand Surgery (British and European Volume) 24: 291–295

    Article  CAS  Google Scholar 

  • Hazari A, Wiberg M, Johansson-Rudén G, Green C, Terenghi G (1999b). A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br J Plast Surg, 52(8): 653–657

    Article  CAS  PubMed  Google Scholar 

  • He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q (2013). Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J Mater Sci Mater Med, 25(2): 1–11

    Article  Google Scholar 

  • Hocking P, Marchessault R (1994). Biopolyesters Chemistry and Technology of BIODEGRADABLE POLymers. Blackie Academic & Professional, 48–96

    Google Scholar 

  • Hon L Q, Ganeshan A, Thomas S M, Warakaulle D, Jagdish J, Uberoi R (2009). Vascular closure devices: a comparative overview. Curr Probl Diagn Radiol, 38(1): 33–43

    Article  PubMed  Google Scholar 

  • Jones N, Cooper J, Waters R, Williams D (2000). Resorption profile and biological response of calcium phosphate filled PLLA and PHB7V. ASTM Spec Tech Publ, 1396: 69–82

    Google Scholar 

  • Kai D, Loh X J (2014). Polyhydroxyalkanoates: Chemical modifications toward biomedical applications. ACS Sustain Chem& Eng, 2(2): 106–119

    Article  CAS  Google Scholar 

  • Kim H W, Chung C W, Rhee Y H (2005). UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly (3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int J Biol Macromol, 35(1-2): 47–53

    Article  CAS  PubMed  Google Scholar 

  • Köse G T, Korkusuz F, Korkusuz P, Purali N, Özkul A, Hasirci V (2003). Bone generation on PHBV matrices: an in vitro study. Biomaterials, 24(27): 4999–5007

    Article  PubMed  Google Scholar 

  • Kostopoulos L, Karring T (1994). Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res, 5(2): 66–74

    Article  CAS  PubMed  Google Scholar 

  • Kunze C, Edgar Bernd H, Androsch R, Nischan C, Freier T, Kramer S, Kramp B, Schmitz K P (2006). In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material. Biomaterials, 27(2): 192–201

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Caputo G A (2013). Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 5(1): 49–66

    Article  CAS  PubMed  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci, 38(3-4): 536–583

    Article  CAS  Google Scholar 

  • Levine A C, Sparano A, Twigg FF, Numata K, Nomura C T (2015). Influence of cross-linking on the physical properties and cytotoxicity of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater Sci Eng, 1(7): 567–576

    Article  CAS  Google Scholar 

  • Li J, Yun H, Gong Y, Zhao N, Zhang X (2005). Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J Biomed Mater Res A, 75(4): 985–998

    Article  PubMed  Google Scholar 

  • Li X, Chang H, Luo H, Wang Z, Zheng G, Lu X, He X, Chen F, Wang T, Liang J, Xu M (2015). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. J Biomed Mater Res A, 103(3): 1169–1175

    Article  PubMed  Google Scholar 

  • Li X T, Sun J, Chen S, Chen G Q (2008). In vitro investigation of maleated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for its biocompatibility to mouse fibroblast L929 and human microvascular endothelial cells. J Biomed Mater Res A, 87(3): 832–842

    Article  PubMed  Google Scholar 

  • Lizarraga-Valderrama L R, Nigmatullin R, Taylor C, Haycock J W, Claeyssens F, Knowles J C, Roy I (2015). Nerve tissue engineering using blends of poly (3-hydroxyalkanoates) for peripheral nerve regeneration. Eng Life Sci, 15(6): 612–621

    Article  CAS  Google Scholar 

  • Lomas A J, Webb W R, Han J, Chen G Q, Sun X, Zhang Z, El Haj A J, Forsyth N R (2013). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/ collagen hybrid scaffolds for tissue engineering applications. Tissue Eng Part C Methods, 19(8): 577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H X, Yang Z Q, Jiao Q, Wang Y Y, Wang L, Yang P B, Chen X L, Zhang P B, Wang P, Chen M X, Lu X Y, Liu Y (2014). Low concentration of serum helps to maintain the characteristics of NSCs/NPCs on alkali-treated PHBHHx film in vitro. Neurol Res, 36(3): 207–214

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wang L, Yang Z, Lu H (2013). Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/ nerve tissue engineering. Adv Biosci Biotechnol, 4(06): 731–740

    Article  CAS  Google Scholar 

  • Luklinska Z B, Bonfield W (1997). Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med, 8(6): 379–383

    Article  CAS  PubMed  Google Scholar 

  • Mauclaire L, Brombacher E, Bünger J D, Zinn M (2010). Factors controlling bacterial attachment and biofilm formation on mediumchain- length polyhydroxyalkanoates (mcl-PHAs). Colloids Surf B Biointerfaces, 76(1): 104–111

    Article  CAS  PubMed  Google Scholar 

  • McBeath R, Pirone D M, Nelson C M, Bhadriraju K, Chen C S (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 6(4): 483–495

    Article  CAS  PubMed  Google Scholar 

  • Miller N D, Williams D F (1987). On the biodegradation of poly-betahydroxybutyrate (PHB) homopolymer and poly-beta-hydroxybutyrate- hydroxyvalerate copolymers. Biomaterials, 8(2): 129–137

    Article  CAS  PubMed  Google Scholar 

  • Moy R L, Waldman B, Hein D W (1992). A review of sutures and suturing techniques. J Dermatol Surg Oncol, 18(9): 785–795

    Article  CAS  PubMed  Google Scholar 

  • Mukai K, Doi Y, Sema Y, Tomita K (1993). Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett, 15(6): 601–604

    Article  CAS  Google Scholar 

  • Naveen S V, Tan I K P, Goh Y S, Raghavendran H R B, Murali M R, Kamarul T (2015). Unmodified medium chain length polyhydroxyalkanoate (uMCL-PHA) as a thin film for tissue engineering application–characterization and in vitro biocompatibility. Mater Lett, 141: 55–58

    Article  CAS  Google Scholar 

  • Nelson T, Kaufman E, Kline J, Sokoloff L (1981). The extraneural distribution of g-hydroxybutyrate. J Neurochem, 37(5): 1345–1348

    Article  CAS  PubMed  Google Scholar 

  • Novikov L N, Novikova L N, Mosahebi A, Wiberg M, Terenghi G, Kellerth J O (2002). A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials, 23(16): 3369–3376

    Article  CAS  PubMed  Google Scholar 

  • Novikova L N, Pettersson J, Brohlin M, Wiberg M, Novikov L N (2008). Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials, 29(9): 1198–1206

    Article  CAS  PubMed  Google Scholar 

  • O’Connor S, Szwej E, Nikodinovic-Runic J, O’Connor A, Byrne A T, Devocelle M, O’Donovan N, Gallagher W M, Babu R, Kenny S T, Zinn M, Zulian Q R, O’Connor K E (2013). The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials, 34(11): 2710–2718

    Article  PubMed  Google Scholar 

  • Pawan G L, Semple S J (1983). Effect of 3-hydroxybutyrate in obese subjects on very-low-energy diets and during therapeutic starvation. Lancet, 1(8314-5): 15–17

    Article  CAS  PubMed  Google Scholar 

  • Pelham R J, Wang Y (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA, 94(25): 13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng SW, Guo X Y, Shang G G, Li J, Xu X Y, You ML, Li P, Chen G Q (2011). An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials, 32(10): 2546–2555

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol, 82(3): 233–247

    Article  CAS  Google Scholar 

  • Qu X H, Wu Q, Liang J, Qu X, Wang S G, Chen G Q (2005). Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials, 26(34): 6991–7001

    Article  CAS  PubMed  Google Scholar 

  • Qu X H, Wu Q, Zhang K Y, Chen G Q (2006). In vivo studies of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials, 27(19): 3540–3548

    CAS  PubMed  Google Scholar 

  • Ricotti L, Polini A, Genchi G G, Ciofani G, Iandolo D, Vazão H, Mattoli V, Ferreira L, Menciassi A, Pisignano D (2012). Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed Mater, 7(3): 035010

    Article  PubMed  Google Scholar 

  • Saito T, Tomita K, Juni K, Ooba K (1991). In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat. Biomaterials, 12(3): 309–312

    Article  CAS  PubMed  Google Scholar 

  • Shangguan Y Y, Wang Y W, Wu Q, Chen G Q (2006). The mechanical properties and in vitro biodegradation and biocompatibility of UVtreated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials, 27(11): 2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Zhang E, Wei Z (2009). Surface bio-modification of poly (hydroxybutyrate-co-hydroxyhexanoate) and its aging effect. Colloids Surf B Biointerfaces, 73(2): 302–307

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya E I, Volova T G, Gordeev S A, Puzyr A P (2005). Degradation of P(3HB) and P(3HB-co-3HV) in biological media. J Biomater Sci Polym Ed, 16(5): 643–657

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav A, Kim H Y, Kim Y R (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int, 2013: 581684

    Article  PubMed  PubMed Central  Google Scholar 

  • Sodian R, Hoerstrup S P, Sperling J S, Daebritz S, Martin D P, Moran A M, Kim B S, Schoen F J, Vacanti J P, Mayer J E (2000). Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 102(19 Suppl 3): III22–III29

    Article  CAS  PubMed  Google Scholar 

  • Stock U A, Degenkolbe I, Attmann T, Schenke-Layland K, Freitag S, Lutter G (2006). Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves. J Thorac Cardiovasc Surg, 131(6): 1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Dai Z, Zhao Y, Chen G-Q (2007). In vitro effect of oligohydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials, 28: 3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Taylor M S, Daniels A U, Andriano K P, Heller J (1994). Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater, 5(2): 151–157

    Article  CAS  PubMed  Google Scholar 

  • Tezcaner A, Bugra K, Hasirci V (2003). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials, 24(25): 4573–4583

    Article  CAS  PubMed  Google Scholar 

  • Valappil S P, Misra S K, Boccaccini A R, Roy I (2006). Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices, 3(6): 853–868

    Article  CAS  PubMed  Google Scholar 

  • Volova T, Goncharov D, Sukovatyi A, Shabanov A, Nikolaeva E, Shishatskaya E (2013). Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. J Biomater Sci Polym Ed, 25(4): 370–393

    Article  PubMed  Google Scholar 

  • Wang Y, Jiang X L, Peng S W, Guo X Y, Shang G G, Chen J C, Wu Q, Chen G Q (2013). Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates. Biomaterials, 34(15): 3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang X L, Yang S C, Lin X, He Y, Yan C, Wu L, Chen G Q, Wang Z Y, Wu Q (2011). MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials, 32(35): 9207–9217

    Article  CAS  PubMed  Google Scholar 

  • Wang Y W, Wu Q, Chen G Q (2004). Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydro-xybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials, 25(4): 669–675

    Article  PubMed  Google Scholar 

  • Wang Y W, Wu Q, Chen G Q (2005). Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules, 6(2): 566–571

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Hu Y J, Xie WP, Lin R L, Chen G Q (2009). Influence of poly(3- hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrowderived mesenchymal stem cells. J Biomed Mater Res A, 90(3): 894–905

    Article  PubMed  Google Scholar 

  • Wu Q, Wang Y, Chen G Q (2009). Medical application of microbial biopolyesters polyhydroxyalkanoates Artificial Cells. Blood Substitutes and Biotechnology, 37(1): 1–12

    Article  Google Scholar 

  • Xu X Y, Li X T, Peng SW, Xiao J F, Liu C, Fang G, Chen K C, Chen G Q (2010). The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials, 31(14): 3967–3975

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Wang Y, Shen X Y, Yang G, Jian J, Wang H S, Chen G Q, Wu Q (2011). MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials, 32(27): 6435–6444

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhao K, Chen G Q (2002). Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials, 23(5): 1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Yu B Y, Chen C R, Sun Y M, Young T H (2009). The response of rat cerebellar granule neurons (rCGNs) to various polyhydroxyalkanoate (PHA) films. Desalination, 245(1-3): 639–646

    Article  CAS  Google Scholar 

  • Zhao K, Deng Y, Chun Chen J, Chen G Q (2003). Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials, 24(6): 1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Yang X, Chen G Q, Chen J C (2002). Effect of lipase treatment on the biocompatibility of microbial polyhydroxyalkanoates. J Mater Sci Mater Med, 13(9): 849–854

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang S, Kong M, Geng W, Li R K, Song C, Kong D (2012). Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. J Biomed Mater Res B Appl Biomater, 100(1): 23–31

    Article  PubMed  Google Scholar 

  • Zink D, Fischer A H, Nickerson J A (2004). Nuclear structure in cancer cells. Nat Rev Cancer, 4(9): 677–687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Jamil, N. Polyhydroxyalkanoates: Current applications in the medical field. Front. Biol. 11, 19–27 (2016). https://doi.org/10.1007/s11515-016-1389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1389-z

Keywords

Navigation