Skip to main content

Advertisement

Log in

Design of a Refractive Index Plasmonic Sensor Based on a Ring Resonator Coupled to a MIM Waveguide Containing Tapered Defects

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a novel nanoscale refractive index sensor topology, which incorporates a ring resonator containing circular tapered defects coupled to a metal-insulator-metal (MIM) plasmonic waveguide with tapered defects, is proposed. For the proposed design, the effect of introduction of defects on transmittance value, shape of magnetic field, and sensor parameters such as sensitivity (S) and figure of merit (FOM) are investigated numerically and simulated using finite-difference time-domain (FDTD) method. By optimizing the ring radius and selecting the appropriate waveguide width, we have achieved a maximum sensitivity of 1295 nm per refractive index unit (RIU) and a fairly high FOM equal to 159.6 RIU−1. The structure can be used as a high accuracy refractive index sensor for refractive indices ranging from 1 to 1.65. Due to the small size, wide detection range, and the high detection resolution of the proposed sensor, it is a good choice for integrated bio-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70(1):1

    Article  CAS  Google Scholar 

  2. Farmani A, Mir A, Bazgir M, Zarrabi FB (2018) Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Physica E Low Dimens Syst Nanostruct 104:233–240

  3. Thomas J, Perikaruppan P, Thomas V, John J, Mathew RM, Thomas J, Rejeena I, Mathew S, Mujeeb A (2019) Green synthesized plasmonic silver systems for potential non-linear optical applications: optical limiting and dual beam mode matched thermal lensing. Aust J Chem 72(6):460–466

    Article  CAS  Google Scholar 

  4. Estevez MC, Otte MA, Sepulveda B, Lechuga LM (2014) Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chim Acta 806:55–73

    Article  CAS  PubMed  Google Scholar 

  5. Popescu VA (2018) Simulation of some plasmonic biosensors for detection of hemoglobin concentration in human blood. Plasmonics. 13(5):1507–1511

    Article  CAS  Google Scholar 

  6. Malmir K, Habibiyan H, Ghafoorifard H (2016) An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator. Opt Commun 365:150–156

    Article  CAS  Google Scholar 

  7. Monteiro JP, de Oliveira JH, Radovanovic E, Brolo AG, Girotto EM (2016) Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics. 11(1):45–51

    Article  CAS  Google Scholar 

  8. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J Opt Soc Am B 36(2):401–407

  9. Chaykandi ZF, Bahrami A, Mohammadnejad S (2018) Ultra-compact all-optical phase-controlled NAND, OR, XOR, XNOR, and NOT multi-function logic gate. Opt Quant Electron 50(7):280

    Article  Google Scholar 

  10. Geravand A, Danaie M, Mohammadi S (2019) All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature. Opt Commun 430:323–335

    Article  CAS  Google Scholar 

  11. Fleischman D, Fountaine KT, Bukowsky CR, Tagliabue G, Sweatlock LA, Atwater HA (2019) High spectral resolution plasmonic color filters with subwavelength dimensions. ACS Photonics 6(2):332–338

    Article  CAS  Google Scholar 

  12. Xu Z, Feng H, Liu Y, Xia F, Kong W, Yun M (2019) Plasmonic-induced transparency based on MIM waveguide achieved by the structure including a rectangular ring and a rectangular strip. InPlasmonics: design, materials, fabrication, characterization, and applications XVII. International Society for Optics and Photonics 11082:110821X

  13. Danaie M, Geravand A (2018) Design of low-cross-talk metal–insulator–metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J Nanophotonicss 12(4):046009

  14. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18(20):21030–21037

    Article  CAS  PubMed  Google Scholar 

  15. Fasihi K, Bashiri S (2020) Low cross-talk and broadband waveguide nano-intersections. Opt Commun 459:124990

    Article  CAS  Google Scholar 

  16. Danaee E, Geravand A, Danaie M (2019) Wide-band low cross-talk photonic crystal waveguide intersections using self-collimation phenomenon. Opt Commun 431:216–228

    Article  CAS  Google Scholar 

  17. Khani S, Danaie M, Rezaei P (2019) Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E Low Dimens Syst Nanostruct 113:25-34.

  18. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattice Microst 135:106244

    Article  CAS  Google Scholar 

  19. Danaie M, Geravand A, Mohammadi S (2018) Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines. Photonic Nanostruct 28:61–69

  20. Xu J, Wang A, Dan Y (2019) Plasmonic micropipe spectral filters in mid-infrared. Opt Lett 44(18):4479–4482

    Article  CAS  PubMed  Google Scholar 

  21. Rakhshani MR, Mansouri-Birjandi MA (2017) High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuators B Chem 249:168–176

    Article  CAS  Google Scholar 

  22. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics. 14(6):1453–1465

    Article  CAS  Google Scholar 

  23. Ono M, Taniyama H, Xu H, Tsunekawa M, Kuramochi E, Nozaki K, Notomi M (2016) Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica. 3(9):999–1005

    Article  CAS  Google Scholar 

  24. Koch U, Messner A, Hoessbacher C, Heni W, Josten A, Baeuerle B, Ayata M, Fedoryshyn Y, Elder DL, Dalton LR, Leuthold J (2019) Ultra-compact terabit plasmonic modulator array. J Lightwave Technol 37(5):1484–1491

    Article  CAS  Google Scholar 

  25. Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattice Microst 112:404–414

    Article  CAS  Google Scholar 

  26. Bashiri S, Fasihi K (2019) A 2× 1 all-optical multiplexer using Kerr nonlinear nano-plasmonic switch. Opt Quant Electron 51(11):374

    Article  CAS  Google Scholar 

  27. Khani S, Danaie M, Rezaei P (2020) Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonic Nanostruct 40:100802

  28. Dolatabady A, Granpayeh N (2017) Plasmonic directional couplers based on multi-slit waveguides. Plasmonics. 12(3):597–604

    Article  CAS  Google Scholar 

  29. Alipour-Banaei H, Bahrami A, Nazari F, Rostami A (2011) A high Q design for N-channel wavelength division demultiplexer. J Opt Commun 32(4):211–216

    Article  Google Scholar 

  30. Bashiri S, Fasihi K (2020) An all-optical 1× 2 Demultiplexer using Kerr nonlinear nano-plasmonic switches. Plasmonics. 15(2):449–456

    Article  Google Scholar 

  31. Rakhshani MR, Mansouri-Birjandi MA (2016) Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J Mod Opt 63(11):1078–1086

    Article  CAS  Google Scholar 

  32. Rostami A, Bahrami A, Nazari F, Banaei HA (2009) Eight-channel wavelength division demultiplexer using multimode interference. In2009 Asia Communications and Photonics conference and Exhibition (ACP). IEEE 2009:1–6

  33. Rezaei MH, Zarifkar A (2019) Subwavelength electro-optical half-subtractor and half-adder based on graphene plasmonic waveguides. Plasmonics. 14(6):1939–1947

  34. Moradi M, Danaie M, Orouji AA (2019) Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quantum Electron 51(5):154

  35. Khoshdel V, Shokooh-Saremi M (2019) Plasmonic nano bow-tie arrays with enhanced LSPR refractive index sensing. Micro Nano Lett 14(5):566–571

    Article  CAS  Google Scholar 

  36. Rahmatiyar M, Danaie M, Afsahi M (2020) Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt Quant Electron 52(3):1–9

    Article  CAS  Google Scholar 

  37. Shokati E, Asgari S, Granpayeh N (2019) Dual-band polarization-sensitive graphene chiral metasurface and its application as a refractive index sensor. IEEE Sensors J 19(21):9991–9996

    Article  CAS  Google Scholar 

  38. Abbasi MM, Darbari S, Moravvej-Farshi MK (2019) Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation. Opt Express 27(19):26648–26660

  39. Tunsiri S, Thammawongsa N, Threepak T, Mitatha S, Yupapin P (2019) Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics. 14(6):1669–1677

    Article  Google Scholar 

  40. Zhang Y, Kuang Y, Zhang Z, Tang Y, Han J, Wang R, Cui J, Hou Y, Liu W (2019) High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity. Appl Phys A 125(1):13

  41. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors. 18(1):116

    Article  CAS  PubMed Central  Google Scholar 

  42. Dolatabady A, Granpayeh N (2012) All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J Opt Soc Korea 16(4):432–442

    Article  Google Scholar 

  43. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019 Jan) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors. 19(4):791

    Article  CAS  PubMed Central  Google Scholar 

  44. Harter T, Muehlbrandt S, Ummethala S, Schmid A, Nellen S, Hahn L, Freude W, Koos C (2018) Silicon–plasmonic integrated circuits for terahertz signal generation and coherent detection. Nat Photonics 12(10):625–633

    Article  CAS  Google Scholar 

  45. Li Z, Wen K, Chen L, Lei L, Zhou J, Zhou D, Fang Y, Wu B (2019) Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure. Appl Opt 58(18):4878–4883

    Article  CAS  PubMed  Google Scholar 

  46. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  47. Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(25):253116

    Article  CAS  Google Scholar 

  48. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73(3):035407

    Article  CAS  Google Scholar 

  49. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):10

    Article  CAS  Google Scholar 

  50. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  51. Zhang Z, Wang H, Zhao Y, Lu D, Zhang Z (2013) Transmission properties of the one-end-sealed metal–insulator–metal waveguide. Optik. 124(2):177–179

    Article  CAS  Google Scholar 

  52. Kekatpure RD, Hryciw AC, Barnard ES, Brongersma ML (2009) Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt Express 17(26):24112–24129

    Article  PubMed  Google Scholar 

  53. Wang G, Lu H, Liu X, Gong Y, Wang L (2011) Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl Opt 50(27):5287–5290

    Article  CAS  PubMed  Google Scholar 

  54. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  PubMed  Google Scholar 

  55. Shibayama J, Kawai H, Yamauchi J, Nakano H (2019) Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt Commun 452:360–365

  56. Ni B, Chen XY, Xiong DY, Liu H, Hua GH, Chang JH, Zhang JH, Zhou H (2015) Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt Quant Electron 47(6):1339–1346

    Article  CAS  Google Scholar 

  57. Xie YY, Huang YX, Zhao WL, Xu WH, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photonics J 7(2):1–2

    Article  CAS  Google Scholar 

  58. Yan SB, Luo L, Xue CY, Zhang ZD (2015) A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors. 15(11):29183–29191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Shao M, Zeng X (2016) High quality plasmonic sensors based on Fano resonances created through cascading double asymmetric cavities. Sensors 16(10):1730

    Article  PubMed Central  Google Scholar 

  60. Chen F, Yao D (2016) Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt Commun 369:72–78

    Article  CAS  Google Scholar 

  61. Rakhshani MR, Mansouri-Birjandi MA (2016) High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sensors J 16(9):3041–3046

    Article  CAS  Google Scholar 

  62. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors. 16(5):642

    Article  PubMed Central  Google Scholar 

  63. Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H (2017) Plasmon-induced transparency based on a triangle cavity coupled with an ellipse-ring resonator. Appl Opt 56(34):9556–9563

    Article  PubMed  Google Scholar 

  64. Li S, Wang Y, Jiao R, Wang L, Duan G, Yu L (2017) Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt Express 25(4):3525–3533

    Article  PubMed  Google Scholar 

  65. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics. 13(1):251–257

    Article  CAS  Google Scholar 

  66. Rashed AR, Gudulluoglu B, Yun HW, Habib M, Boyaci IH, Hong SH, Ozbay E, Caglayan H (2018) Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits. Sci Rep 8(1):1–9

    CAS  Google Scholar 

  67. Wang L, Zeng YP, Wang ZY, Xia XP, Liang QQ (2018) A refractive index sensor based on an analogy T shaped metal–insulator–metal waveguide. Optik. 172:1199–1204

    Article  CAS  Google Scholar 

  68. Zhang Z, Yang J, Xu H, Xu S, Han Y, He X, Zhang J, Huang J, Chen D, Xie W (2019) A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application. Phys Scr 94(12):125511

  69. Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66(9):1038–1043

    Article  CAS  Google Scholar 

  70. Rafiee E, Negahdari R, Emami F (2019) Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy. Photonic Nanostruct 33:21–28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Afsahi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatiyar, M., Afsahi, M. & Danaie, M. Design of a Refractive Index Plasmonic Sensor Based on a Ring Resonator Coupled to a MIM Waveguide Containing Tapered Defects. Plasmonics 15, 2169–2176 (2020). https://doi.org/10.1007/s11468-020-01238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01238-z

Keywords

Navigation