Skip to main content
Log in

An all-optical 1× 2 Demultiplexer Using Kerr Nonlinear Nano-plasmonic Switches

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a novel surface plasmon polariton (SPP) based all-optical 1× 2 demultiplexer, which is based on a modified Y-branch structure and a controllable switching module, is presented. In the modified Y-branch structure, which acts as an ideal wide-band splitter, the width of the branches are chosen as one half the input waveguide. The switching module is constructed using two nano-plasmonic racetrack-shaped disk resonators which are side coupled to the branches of the Y-branch structure. It has been shown that using a pump light power, the transmissions of the input signal into the output ports can be controlled. The simulation results are based on the two dimensional finite-difference time-domain (2D FDTD) method. In the proposed device, the “on” state transmission coefficients and the extinction ratios (measured at the output ports), for the pump light source with the wavelength of 660  nm and the intensity of 1.75  MW/cm2, are about 0.74 and 28.75 dB, respectively. Furthermore, in this case, the switching times of the proposed device, measured at the port 1 and port 2, are about 100  fs and 180  fs, respectively. It is expected that the proposed device can find applications in all-optical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Wahsheh RA, Lu Z, Abushagur MAG (2009) Nanoplasmonic couplers and splitters. Opt Express 17:19033

    Article  Google Scholar 

  3. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  Google Scholar 

  4. Lin X, Huang X (2008) Tooth-shaped plasmonic waveguide fllters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  Google Scholar 

  5. Dolatabady A, Granpayeh N (2017) All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator. J Nanophotonics 112:026001–026008

    Article  Google Scholar 

  6. Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31756–31765

    Article  Google Scholar 

  7. Zhao W, Ju D, Jiang Y (2015) Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10:311–317

    Article  Google Scholar 

  8. Piao X, Yu S, Park N (2012) Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20:18994–18999

    Article  Google Scholar 

  9. Nikolajsen T, Leosson K, Bozhevolnyi SI (2013) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833

    Article  Google Scholar 

  10. Liu H, Gao Y, Zhu B, Ren G, Jian S (2015) A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt Commun 334:164–169

    Article  CAS  Google Scholar 

  11. Zhao W, Ju D, Jiang Y (2015) Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10:311–317

    Article  Google Scholar 

  12. Min C, Wang P, Chen C, Deng Y, Lu Y, Ming H, Ning T, Zhou Y, Yang G (2008) All optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett 33:869–871

    Article  Google Scholar 

  13. Binfeng Y, Guohua H, Ruohu Z, Yiping C (2014) Design of a compact and high sensitive refractive index sensor base on metal–insulator–metal plasmonic bragg grating. Opt Express 22:28662–28670

    Article  Google Scholar 

  14. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  15. Min CJ, Wang P, Chen CC, Deng Y, Lu YH, Ming H, Ning TY, Zhou YL, Yang GZ (2008) All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt Lett 33:869–871

    Article  Google Scholar 

  16. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 410:142–147

    Article  CAS  Google Scholar 

  17. Nozhat N, Granpayeh N (2014) All-optical nonlinear plasmonic ring resonator switches. J Mod Opt 61:1690–1695

    Article  CAS  Google Scholar 

  18. Wang X, Jiang H, Chen J, Wang P, Lu Y, Ming H (2011) Optical bistability effect in plasmonic racetrack resonator with high extinction ratio. Opt Express 19:19415–19421

    Article  CAS  Google Scholar 

  19. Bana X, Pang X, Li X, Hu B, Guo Y, Zheng H (2018) A nonlinear plasmonic waveguide based all-optical bidirectional switching. Opt Commun 406:124–127

    Article  CAS  Google Scholar 

  20. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  CAS  Google Scholar 

  21. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  22. Wang G, Lu H, Liu X, Gong Y, Wang L (2011) Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl Opt 50:5287–5290

    Article  CAS  Google Scholar 

  23. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 410:142–147

    Article  CAS  Google Scholar 

  24. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  CAS  Google Scholar 

  25. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiazand Fasihi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashiri, S., Fasihi, K. An all-optical 1× 2 Demultiplexer Using Kerr Nonlinear Nano-plasmonic Switches. Plasmonics 15, 449–456 (2020). https://doi.org/10.1007/s11468-019-01068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01068-8

Keywords

Navigation