Skip to main content
Log in

Ultra-high figure of merit refractive index sensor based on concentric ring and disk resonator

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A plasmonic refractive index sensor based on metal–insulator–metal (MIM) waveguide coupled with concentric ring and disk resonator (CRDR) is proposed in this work. The plasmonic refractive index sensor with a sensitivity of 1039 nm/RIU and a high figure of merit (FOM) of 401 in the near-infrared region is numerically investigated using a finite element method (FEM). The physical mechanism of high Q factor of the mode of CRDR can be explained by the coupled mode theory. The structural parameters of the plasmonic sensor are also discussed. The structural parameters can be changed to adjust the sensor properties. Furthermore, the application of proposed plasmonic sensor in bio-sensing is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  ADS  Google Scholar 

  2. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. Rev. Sect. Phys. Lett. 408, 131–314 (2005). https://doi.org/10.1016/j.physrep.2004.11.001

    Article  Google Scholar 

  3. X.F. Zhao, Z.D. Zhang, S.B. Yan, Tunable fano resonance in asymmetric MIM waveguide structure. Sensors. 17, 1–8 (2017). https://doi.org/10.3390/s17071494

    Article  Google Scholar 

  4. H. Lu, X.M. Liu, D. Mao, G.X. Wang, Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 37, 3780–3782 (2012). https://doi.org/10.1364/ol.37.003780

    Article  ADS  Google Scholar 

  5. Y. Tang, Z.D. Zhang, R.B. Wang, Z.Y. Hai, C.Y. Xue, W.D. Zhang, S.B. Yan, Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors. 17, 1–8 (2017). https://doi.org/10.3390/s17040784

    Article  Google Scholar 

  6. X.S. Lin, X.G. Huang, Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008). https://doi.org/10.1364/ol.33.002874

    Article  ADS  Google Scholar 

  7. Y.P. Qi, P.Y. Zhou, T. Zhang, X.W. Zhang, Y. Wang, C.Q. Liu, Y.L. Bai, X.X. Wang, Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities. Res. Phys. 14, 102506 (2019). https://doi.org/10.1016/j.rinp.2019.102506

    Article  Google Scholar 

  8. D. Wu, C. Liu, Y.M. Liu, L. Yu, Z.Y. Yu, L. Chen, R. Ma, H. Ye, Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42, 450–453 (2017). https://doi.org/10.1364/ol.42.000450

    Article  ADS  Google Scholar 

  9. H. Lu, X.M. Liu, L.R. Wang, Y.K. Gong, D. Mao, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011). https://doi.org/10.1364/oe.19.002910

    Article  ADS  Google Scholar 

  10. C.T.C. Chao, Y.F.C. Chau, H.J. Huang, N. Kumara, M.R.R. Kooh, C.M. Lim, H.P. Chiang, Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10, 1–14 (2020). https://doi.org/10.3390/nano10071399

    Article  Google Scholar 

  11. M.S. Islam, J. Sultana, A.A. Rifat, R. Ahmed, A. Dinovitser, B.W.H. Ng, H. Ebendorff-Heidepriem, D. Abbott, Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26, 30347–30361 (2018). https://doi.org/10.1364/oe.26.030347

    Article  ADS  Google Scholar 

  12. M.J. Al-mahmod, R. Hyder, M.Z. Islam, Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photon. Nanostruct. Fundam. Appl. 25, 52–57 (2017). https://doi.org/10.1016/j.photonics.2017.05.001

    Article  ADS  Google Scholar 

  13. S.N. Khonina, N.L. Kazanskiy, M.A. Butt, Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens. J. 20, 8469–8476 (2020). https://doi.org/10.1109/jsen.2020.2985840

    Article  ADS  Google Scholar 

  14. G.G. Qiu, Z.B. Gai, Y.L. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020). https://doi.org/10.1021/acsnano.0c02439

    Article  Google Scholar 

  15. F. Lotfi, N. Sang-Nourpour, R. Kheradmand, High-sensitive plasmonic sensor based on Mach-Zehnder interferometer. Opt. Laser Technol. 137, 106809 (2021). https://doi.org/10.1016/j.optlastec.2020.106809

    Article  Google Scholar 

  16. Z.D. Zhang, H.Y. Wang, Y.N. Zhao, D. Lu, Z.Y. Zhang, Transmission properties of the one-end-sealed metal-insulator-metal waveguide. Optik 124, 177–179 (2013). https://doi.org/10.1016/j.ijleo.2011.11.066

    Article  ADS  Google Scholar 

  17. Z.J. Zhang, J.B. Yang, X. He, J.J. Zhang, J. Huang, D.B. Chen, Y.X. Han, Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors. 18, 1–14 (2018). https://doi.org/10.3390/s18010116

    Article  Google Scholar 

  18. S.B. Yan, L. Luo, C.Y. Xue, Z.D. Zhang, A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors. 15, 29183–29191 (2015). https://doi.org/10.3390/s151129183

    Article  ADS  Google Scholar 

  19. Z.D. Zhang, L. Luo, C.Y. Xue, W.D. Zhang, S.B. Yan, Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors. 16, 1–10 (2016). https://doi.org/10.3390/s16050642

    Article  Google Scholar 

  20. J.J. Chen, Z. Li, Y.J. Zou, Z.L. Deng, J.H. Xiao, Q.H. Gong, Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4

    Article  Google Scholar 

  21. M. Rahmatiyar, M. Afsahi, M. Danaie, Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15, 2169–2176 (2020). https://doi.org/10.1007/s11468-020-01238-z

    Article  Google Scholar 

  22. A. Hocini, H. Ben Salah, D. Khedrouche, N. Melouki, A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure. Opt. Quant. Electr. 52, 336 (2020). https://doi.org/10.1007/s11082-020-02446-x

    Article  Google Scholar 

  23. R. El Haffar, A. Farkhsi, O. Mahboub, Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A-Mater. Sci. Process. 126(486), 1–10 (2020). https://doi.org/10.1007/s00339-020-03660-w

    Article  Google Scholar 

  24. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257

    Article  ADS  Google Scholar 

  25. W. Su, Y.M. Ding, Y.L. Luo, Y. Liu, A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface. Res. Phys. 16, 102833 (2020). https://doi.org/10.1016/j.rinp.2019.102833

    Article  Google Scholar 

  26. S. Karmakar, D. Kumar, R.K. Varshney, D.R. Chowdhury, Strong terahertz matter interaction induced ultrasensitive sensing in Fano cavity based stacked metamaterials. J. Phys. D-Appl. Phys. 53, 415101 (2020). https://doi.org/10.1088/1361-6463/ab94e3

    Article  Google Scholar 

  27. S. Asgari, S. Pooretemad, N. Granpayeh, Plasmonic refractive index sensor based on a double concentric square ring resonator and stubs. Photon. Nanostruct. Fundam. Appl. 42, 100857 (2020). https://doi.org/10.1016/j.photonics.2020.100857

    Article  Google Scholar 

  28. T.S. Wu, Y.M. Liu, Z.Y. Yu, Y.W. Peng, C.G. Shu, H. Ye, The sensing characteristics of plasmonic waveguide with a ring resonator. Opt. Express 22, 7669–7677 (2014). https://doi.org/10.1364/oe.22.007669

    Article  ADS  Google Scholar 

  29. H. Lu, X.M. Liu, D. Mao, L.R. Wang, Y.K. Gong, Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18, 17922–17927 (2010). https://doi.org/10.1364/oe.18.017922

    Article  ADS  Google Scholar 

  30. L. Chen, Y.M. Liu, Z.Y. Yu, D. Wu, R. Ma, Y. Zhang, H. Ye, Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt. Express 24, 9975–9983 (2016). https://doi.org/10.1364/oe.24.009975

    Article  ADS  Google Scholar 

  31. R.D. Kekatpure, A.C. Hryciw, E.S. Barnard, M.L. Brongersma, Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 17, 24112–24129 (2009). https://doi.org/10.1364/oe.17.024112

    Article  ADS  Google Scholar 

  32. T.B. Wang, X.W. Wen, C.P. Yin, H.Z. Wang, The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 17, 24096–24101 (2009). https://doi.org/10.1364/oe.17.024096

    Article  ADS  Google Scholar 

  33. I.P. Kaminow, W.L. Mammel, H.P. Weber, Metal-clad optical waveguides: analytical and experimental study. Appl. Opt. 13, 396–405 (1974). https://doi.org/10.1364/AO.13.000396

    Article  ADS  Google Scholar 

  34. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  35. M.L. Jiang, J.W. Qi, M.S. Zhang, Q. Sun, J. Chen, Z.Q. Chen, X.Y. Yu, Y.D. Li, J.G. Tian, Ultra-high quality factor metallic micro-cavity based on concentric double metal-insulator-metal rings. Sci. Rep. 7, 15663 (2017). https://doi.org/10.1038/s41598-017-15906-4

    Article  ADS  Google Scholar 

  36. L. Zhang, M.P. Song, T. Wu, L.G. Zou, R.G. Beausoleil, A.E. Willner, Embedded ring resonators for microphotonic applications. Opt. Lett. 33, 1978–1980 (2008). https://doi.org/10.1364/ol.33.001978

    Article  ADS  Google Scholar 

  37. L.J. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y.N. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005). https://doi.org/10.1021/nl0515753

    Article  ADS  Google Scholar 

  38. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P.V. Braun, H. Giessen, Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 97, 253166 (2010). https://doi.org/10.1063/1.3530795

    Article  Google Scholar 

  39. S. Khani, M. Hayati, An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlatt. Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.106970

    Article  Google Scholar 

  40. R. Zafar, S. Nawaz, G. Singh, A. D’Alessandro, M. Salim, Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens. J. 18, 4372–4377 (2018). https://doi.org/10.1109/jsen.2018.2826040

    Article  ADS  Google Scholar 

  41. H. Mathuriya, R. Zafar, G. Singh, Plasmonic grating-based refractive index sensor with high sensitivity. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1925600

    Article  Google Scholar 

  42. S. Achi, A. Hocini, H. Ben Salah, A. Harhouz, refractive index sensor MIM based waveguide coupled with a slotted side resonator. Prog. Electromag. Res. M 96, 147–156 (2020). https://doi.org/10.2528/PIERM20061803

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11504185, 61178004, 11874229); Natural Science Foundation of Tianjin City (20JCQNJC01410); Science and Technology Commission of Tianjin Binhai New Area (BHXQKJXM-PT-ZJSHJ-2017003); 111 Project (B07013); Program for Changjiang Scholars and Innovative Research Team in Nankai University (IRT_13R29); and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongqiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Chen, Z., Qi, J. et al. Ultra-high figure of merit refractive index sensor based on concentric ring and disk resonator. J Opt 52, 120–127 (2023). https://doi.org/10.1007/s12596-022-00915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00915-y

Keywords

Navigation