Skip to main content
Log in

Spoof Surface Plasmon Polariton-Based Reconfigurable Band-Pass Filter Using Planar Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we report the design, analysis, and development of spoof surface plasmon polariton (SSPP)-based reconfigurable band-pass filter using a planar ring resonator. A transition from quasi-transverse electromagnetic (QTEM) mode of microstrip to SSPP mode was implemented which has been subsequently used to develop a reconfigurable band-pass filter. Trapezoidal shape periodically corrugated metallic grooves etched on the planar metallic surface have been used in the implementation of this transition. In the designed transition, impedance and mode matching between QTEM mode and SSPP mode have been achieved using gradient grooves. The developed transition has been used in the characterization of a ring resonator corrugated with the periodical array of the trapezoidal shape grooves. This SSPP ring resonator shows multiple passbands at different frequencies within the specified frequency range. Varactor diodes have been incorporated in the SSPP ring resonator to obtain tunable passband. Three types of varactor-tuned circuits have been experimentally implemented and characterized using SMV2019-079LF diode package. These circuits will pave the path for development of other front-end circuit elements using the concept of spoof SPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Verlag, New York

    Book  Google Scholar 

  3. Pitarke JM, Silkin VM, Chulko EV v, Echenique PM (2006) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 1(1):54

    Google Scholar 

  4. Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62

    Article  CAS  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91. https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  6. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science Rev 311:189–194

    CAS  Google Scholar 

  7. Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848

    Article  CAS  Google Scholar 

  8. Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt 7(2):97–101

    Article  Google Scholar 

  9. Hibbins AP, Evans BR, Sambles JR (2005) Experimental verification of designer surface plasmons. Sci Report 308(5722):670–672

    CAS  Google Scholar 

  10. Rusina A, Durach M, Stockman MI (2010) Theory of spoof plasmons in real metals. Appl Phys A Mater Sci Process 100(2):375–378

    Article  CAS  Google Scholar 

  11. Shen X, Jun T, Martin-cano D, Garcia-vidal FJ (2013) Conformal surface plasmons propagating on ultrathin and flexible films. PNAS 110(1):40–45

    Article  CAS  Google Scholar 

  12. Ma HF, Shen X, Cheng Q, Jiang WX, Cui TJ (2014) Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev 8(1):146–151

    Article  CAS  Google Scholar 

  13. Kianinejad A, Chen ZN, Qiu CW (2015) Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans Microwave Theory Tech 63(6):1817–1825

    Article  Google Scholar 

  14. Liu X, Zhu L, Wu Q, Feng Y (2015) Highly-confined and low-loss spoof surface plasmon polaritons structure with the periodic loading of trapezoidal grooves. AIP Adv 5:077123

    Article  Google Scholar 

  15. Zhang W, Zhu G, Sun L, Lin F (2015) Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. J Appl Phys 106:021104. https://doi.org/10.1063/1.4905675

    Article  CAS  Google Scholar 

  16. Xu J, Yin JY, Zhang HC, Cui TJ (2016) Compact feeding network for array radiations of spoof surface plasmon polaritons. Sci Rep 6. https://doi.org/10.1038/srep22692

  17. Zhou YJ, Yang BJ (2015) Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves. Appl Opt 54(14):4529–4533

    Article  Google Scholar 

  18. Zhao L, Zhang X, Wang J, Wenhua Y, Li J, Hai S, Shen X (2016) A novel broadband band-pass filter based on spoof surface plasmon polaritons. Sci Rep 6. https://doi.org/10.1038/srep36069

  19. Jaiswal RK, Pathak NP (2016) Spoof surface plasmons polaritons based multi-band band passes filter. In: IEEE APMC Conference pp 1–4. https://doi.org/10.1109/APMC.2016.7931393

  20. Jaiswal RK, Pathak NP (2016) Development and design of multi-band bandpass filter based on the concept of spoof surface plasmon polaritons. In: IEEE ICIIS conference. pp 529–533. https://doi.org/10.1109/ICIINFS.2016.8262997

  21. Kianinejad A, Chen ZN, Zhang L, Liu W, Qiu C-W (2016) Spoof plasmon-based slow-wave excitation of dielectric resonator antennas. IEEE Trans Antennas Propag 64(6):2094–2099

    Article  Google Scholar 

  22. Jaiswal RK, Pandit N, Pathak NP (2017) Design, analysis, and characterization of designer surface plasmon polaritons based dual band antenna. Springer. Plasmonics 13:1209–1218. https://doi.org/10.1007/s11468-017-0622-1

    Article  Google Scholar 

  23. Jaiswal RK, Pandit N, Pathak NP (2017) Design of multiple band-notch ring resonator filter based on plasmonic metamaterial at microwave frequency. In: IEEE iAim Conference (in press)

  24. Liu J, Yan Y, Shao J, Pan C, Zhang YH, Han G (2016) Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency. Appl Phys 55(7)

  25. Shen X, Cui TJ (2013) Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl Phys Lett 102:211909

    Article  Google Scholar 

  26. Xu B, Li Z, Liu L, Xu J, Chen C, Gu C (2016) Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons. J Opt Soc Am B 33(7):1388–1391

    Article  Google Scholar 

  27. Xu B, Li Z, Liu L, Xu J, Chen C, Ning P, Chen X, Gu C (2015) Tunable band-notched coplanar waveguide based on localized spoof surface plasmons. Opt Lett 40(20):4683–4686

    Article  Google Scholar 

  28. Jaiswal RK, Pandit N, Pathak NP (2017) A novel transition device and multiple band-pass filters using ring resonator based on spoof surface plasmon polaritons at microwave frequency. In: IEEE IMarc Conference (in press)

  29. Park Electro chemical Corp.: Nelco RF/microwave circuitry material. Nelco N9000; Rev6–06 Available: http://www.cadxservices.com/guides/pdfs/n9000a.pdf

  30. Kai C, Lung-Hwa H (2004) Microwave ring circuits and related structures, 2nd edn. Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Prasad Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, R.K., Pandit, N. & Pathak, N.P. Spoof Surface Plasmon Polariton-Based Reconfigurable Band-Pass Filter Using Planar Ring Resonator. Plasmonics 14, 631–646 (2019). https://doi.org/10.1007/s11468-018-0841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0841-0

Keywords

Navigation