Skip to main content
Log in

Theory of spoof plasmons in real metals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this Letter we develop a theory of spoof plasmons propagating on real metals perforated with planar periodic grooves. Deviation from the spoof plasmons on perfect conductor due to finite skin depth has been analytically described. This allowed us to investigate important propagation characteristics of spoof plasmons such as quality factor and propagation length as the function of the geometrical parameters of the structure. We have also considered THz field confinement by adiabatic increase of the depth of the grooves. It is shown that the finite skin depth limits the propagation length of spoof plasmons as well as a possibility to localize THz field. Geometrical parameters of the structure are found which provide optimal guiding and localization of THz energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305(5685), 847–848 (2004)

    Article  ADS  Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  3. A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308(5722), 670–672 (2005)

    Article  ADS  Google Scholar 

  4. F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005)

    Article  ADS  Google Scholar 

  5. F.J.G. de Abajo, J.J. Sáenz, Electromagnetic surface modes in structured perfect-conductor surfaces. Phys. Rev. Lett. 95(23), 233901 (2005)

    Article  ADS  Google Scholar 

  6. Z. Ruan, M. Qiu, Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface. Appl. Phys. Lett. 90(20), 201906 (2007)

    Article  ADS  Google Scholar 

  7. S.A. Maier, S.R. Andrews, L. Martin-Moreno, F.J. Garcia-Vidal, Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805-1-4 (2006)

    Article  ADS  Google Scholar 

  8. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, C. Wang, Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Opt. Express 14(26), 13021–13029 (2006)

    Article  ADS  Google Scholar 

  9. L. Shen, X. Chen, Y. Zhongand, K. Agarwal, Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Phys. Rev. B 77, 075408 (2008)

    Article  ADS  Google Scholar 

  10. L. Shen, X. Chen, T. Yang, Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt. Express 16(5), 3326–3333 (2008)

    Article  ADS  Google Scholar 

  11. D. Martin-Cano, M.L. Nesterov, A.I. Fernandez-Dominguez, F.J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, Domino plasmons for subwavelengthterahertz circuitry. Opt. Express 18(2), 754–764 (2010)

    Article  ADS  Google Scholar 

  12. A. Rusina, M. Durach, K.A. Nelson, M.I. Stockman, Nanoconcentration of terahertz radiation in plasmonic waveguides. Opt. Express 16(23), 18576–18589 (2008)

    Article  ADS  Google Scholar 

  13. M. Born, E. Wolf, Principles of Optics (University Press, Cambridge, 1999)

    Google Scholar 

  14. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, J.R.W. Alexander, C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983)

    Article  ADS  Google Scholar 

  15. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404-1-4 (2004)

    Article  ADS  Google Scholar 

  16. C. Ropers, C.C. Neacsu, T. Elsaesser, M. Albrecht, M.B. Raschke, C. Lienau, Grating-coupling of surface plasmons onto metallic tips: a nano-confined light source. Nano Lett. 7, 2784–2788 (2007)

    Article  ADS  Google Scholar 

  17. E. Verhagen, M. Spasenovic, A. Polman, L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102(20), 203904-4 (2009)

    Article  ADS  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford and New York, 1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Stockman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusina, A., Durach, M. & Stockman, M.I. Theory of spoof plasmons in real metals. Appl. Phys. A 100, 375–378 (2010). https://doi.org/10.1007/s00339-010-5866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5866-y

Keywords

Navigation