Skip to main content
Log in

Two-dimensional MXenes and their applications

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)

    Article  Google Scholar 

  2. M. Anayee, N. Kurra, M. Alhabeb, M. Seredych, M. N. Hedhili, A. Emwas, H. N. Alshareef, B. Anasori, and Y. Gogotsi, Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene, Chem. Commun. (Camb.) 56(45), 6090 (2020)

    Article  Google Scholar 

  3. A. VahidMohammadi, J. Rosen, and Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science 372, eabf1581 (2021)

    Article  Google Scholar 

  4. J. Zhang, Z. Cui, J. Liu, C. Li, H. Tan, G. Shan, and R. Ma, Bifunctional oxygen electrocatalysts for rechargeable zinc—air battery based on MXene and beyond, Front. Phys. 18(1), 13603 (2023)

    Article  ADS  Google Scholar 

  5. B. Liu, L. Qian, Y. Zhao, Y. Zhang, F. Liu, Y. Zhang, Y. Xie, and W. Shi, A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)

    Article  ADS  Google Scholar 

  6. R. Qin, G. Shan, M. Hu, and W. Huang, Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors, Mater. Today Phys. 21, 100527 (2021)

    Article  Google Scholar 

  7. H. Kim and H. N. Alshareef, MXetronics: MXeneenabled electronic and photonic devices, ACS Mater. Lett. 2, 55 (2020)

    Article  Google Scholar 

  8. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R. K. Y. Li, Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)

    Article  ADS  Google Scholar 

  9. Q. Liao, H. Liu, Z. Chen, Y. Zhang, R. Xiong, Z. Cui, C. Wen, and B. Sa, Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance, Front. Phys. 18(3), 33300 (2023)

    Article  ADS  Google Scholar 

  10. K. S. Novoselov, D. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    Article  ADS  Google Scholar 

  11. G. Gao, G. Ding, J. Li, K. Yao, M. Wu, and M. Qian, Monolayer MXenes: Promising half-metals and spin gapless semiconductors, Nanoscale 8(16), 8986 (2016)

    Article  ADS  Google Scholar 

  12. N. Frey, A. Bandyopadhyay, H. Kumar, B. Anasori, Y. Gogotsi, and V. Shenoy, Surface engineered MXenes: Electric field control of magnetism and enhanced magnetic anisotropy, ACS Nano 13(3), 2831 (2019)

    Article  Google Scholar 

  13. M. Zhao, J. Chen, S. S. Wang, M. An, and S. Dong, Multiferroic properties of oxygen-functionalized magnetic i-MXone, Phys. Rev. Mater. 5(9), 094408 (2021)

    Article  Google Scholar 

  14. K. Hantanasirisakul, B. Anasori, S. Nemsak, J. L. Hart, J. Wu, Y. Yang, R. V. Chopdekar, P. Shafer, A. F. May, E. J. Moon, J. Zhou, Q. Zhang, M. L. Taheri, S. J. May, and Y. Gogotsi, Evidence of magnetic transition in atomically thin Cr2TiC2Tx MXene, Nanoscale Horiz. 5(12), 1557 (2020)

    Article  ADS  Google Scholar 

  15. Y. Zhang, Z. Cui, B. Sa, N. Miao, J. Zhou, and Z. Sun, Computational design of double transition metal MXenes with intrinsic magnetic properties, Nanoscale Horiz. 7(3), 276 (2022)

    Article  ADS  Google Scholar 

  16. V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, and D. V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes, Science 369(6506), 979 (2020)

    Article  ADS  Google Scholar 

  17. X. Zhang, P. Gong, F. Liu, K. Yao, J. Wu, and S. Zhu, High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2), Front. Phys. 17(5), 53510 (2022)

    Article  ADS  Google Scholar 

  18. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)

    Article  Google Scholar 

  19. Z. Yan, Z. H. Jiang, J. P. Lu, and Z. H. Ni, Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure, Front. Phys. 13(4), 138115 (2018)

    Article  ADS  Google Scholar 

  20. J. K. El-Demellawi, S. Lopatin, J. Yin, O. F. Mohammed, and H. N. Alshareef, Tunable multipolar surface plasmons in 2D Ti3C2Tx MXene flakes, ACS Nano 12(8), 8485 (2018)

    Article  Google Scholar 

  21. G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flyzani-Stephanopoulos, and E. C. H. Sykes, Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations, Science 335(6073), 1209 (2012)

    Article  ADS  Google Scholar 

  22. M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, and M. Notomi, Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides, Nat. Photonics 14(1), 37 (2020)

    Article  ADS  Google Scholar 

  23. Y. Zhang, F. Zhang, B. Du, H. Chen, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, B. Zhang, and H. Zhang, Au/MXene based ultrafast all-optical switching, Front. Phys. 18(3), 33301 (2023)

    Article  ADS  Google Scholar 

  24. X. Li, G. Shan, R. Ma, C. H. Shek, H. Zhao, and S. Ramakrishna, Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications, Front. Phys. 17(6), 63501 (2022)

    Article  ADS  Google Scholar 

  25. R. Qin, M. Hu, X. Li, L. Yan, C. Wu, J. Liu, H. Gao, G. Shan, and W. Huang, A highly sensitive piezoresistive sensor based on MXene and polyvinyl butyral with a wide detection limit and low power consumption, Nanoscale 12(34), 17715 (2020)

    Article  Google Scholar 

  26. L. Zhang, J. He, Y. Liao, X. Zeng, N. Qiu, Y. Liang, P. Xiao, and T. Chen, A self-protective, reproducible textile sensor with high performance towards human-machine interactions, J. Mater. Chem. A 7(46), 26631 (2019)

    Article  Google Scholar 

  27. Z. Zhu, D. W. H. Ng, H. S. Park, and M. C. McAlpine, 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies, Nat. Rev. Mater. 6(1), 27 (2020)

    Article  ADS  Google Scholar 

  28. R. Qin, G. C. Shan, X. Li, J. C. Li, and S. Ramakrishna, MXene-based flexible and wearable electronics for personal healthcare monitoring, in: International Conference on Frontier Materials 2022 (2022), doi: icfm.2022.5.29/14.10.D03

  29. Y. Gogotsi and Q. Huang, MXenes: Two-dimensional building blocks for future materials and devices, ACS Nano 15(4), 5775 (2021)

    Article  Google Scholar 

  30. B. Anasori and Y. Gogotsi, MXenes: Trends, growth, and future directions, Graphene and 2D Mater. 7, 75 (2022)

    Article  Google Scholar 

  31. P. P. Michałowski, M. Anayee, T. S. Mathis, S. Kozdra, A. Wójcik, K. Hantanasirisakul, I. Jóźwik, A. Piatkowska, M. Możdżonek, A. Malinowska, R. Diduszko, E. Wierzbicka, and Y. Gogotsi, Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry, Nat. Nanotechnol. 17(11), 1192 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (Grant No. 2022YFB4703400) and the “5G + medical and health application pilot project” of the Ministry of Industry and Information Technology of China. Research of Y.G. on synthesis and fundamental properties of MXenes is supported by the U.S. National Science Foundation under grant DMR-2041050.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangcun Shan or Yury Gogotsi.

Ethics declarations

Declaration of competing interest The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, G., Ding, Z. & Gogotsi, Y. Two-dimensional MXenes and their applications. Front. Phys. 18, 13604 (2023). https://doi.org/10.1007/s11467-022-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1254-2

Navigation