Skip to main content
Log in

High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F. Morpurgo, Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9(1), 2516 (2018)

    Article  ADS  Google Scholar 

  2. Y. Ni, K. L. Yao, C. Q. Tang, G. Y. Gao, H. H. Fu, and S. C. Zhu, Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads, RSC Adv. 4(36), 18522 (2014)

    Article  ADS  Google Scholar 

  3. L. N. Du, Z. C. Wang, and G. Z. Zhao, Novel intelligent devices: Two-dimensional materials based memristors, Front. Phys. 17(2), 23602 (2022)

    Article  ADS  Google Scholar 

  4. Z. C. Zhou, F. Y. Yang, S. Wang, L. Wang, X. F. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 23204 (2022)

    Article  ADS  Google Scholar 

  5. G. Y. Luo, X. Y. Lv, L. Wen, Z. Q. Li, and Z. B. Dai, Strain induced topological transitions in twisted double bilayer graphene, Front. Phys. 17(2), 23502 (2022)

    Article  ADS  Google Scholar 

  6. L. Yin, X. C. Wang, and W. B. Mi, Ferromagnetic, ferroelectric and optical modulated multiple resistance states in multiferroic tunnel junctions, ACS Appl. Mater. Interfaces 11(1), 1057 (2019)

    Article  Google Scholar 

  7. S. Yuasa, T. Nagahama, and Y. Suzuki, Spin-polarized resonant tunneling in magnetic tunnel junctions, Science 297(5579), 234 (2002)

    Article  ADS  Google Scholar 

  8. M. F. Sun, X. C. Wang, and W. B. Mi, Large magnetoresistance in Fe3O4/4, 4′-bipyridine/Fe3O4 organic magnetic tunnel junctions, J. Phys. Chem. C 122(5), 3115 (2018)

    Article  Google Scholar 

  9. D. Wijethunge, L. Zhang, C. Tang, and A. J. Du, Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching, Front. Phys. 15(6), 63504 (2020)

    Article  ADS  Google Scholar 

  10. H. L. Yu, Z. G. Shao, Y. M. Tao, X. F. Jiang, Y. J. Dong, J. Zhang, Y. S. Liu, X. F. Yang, and D. J. Chen, Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons, Phys. Chem. Chem. Phys. 24, 3451 (2022)

    Article  Google Scholar 

  11. J. W. Yan, S. Z. Wang, K. Xia, and Y. Q. Ke, Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface, Phys. Rev. B 97(1), 014404 (2018)

    Article  ADS  Google Scholar 

  12. Y. Taniguchi, Y. Miura, K. Abe, and M. Shirai, Theoretical studies on spin-dependent conductance in FePt/MgO/FePt(001) magnetic tunnel junctions, IEEE Trans. Magn. 44(11), 2585 (2008)

    Article  ADS  Google Scholar 

  13. Z. Yan, R. Q. Zhang, X. L. Dong, S. F. Qi, and X. H. Xu, Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions, Phys. Chem. Chem. Phys. 22(26), 14773 (2020)

    Article  Google Scholar 

  14. Y. L. Feng, X. M. Xu, and G. Y. Gao, High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3, Appl. Phys. Lett. 116(2), 022402 (2020)

    Article  ADS  Google Scholar 

  15. F. F. Li, B. S. Yang, Y. Zhu, X. F. Han, and Y. Yan, Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3, Appl. Phys. Lett. 117(2), 022412 (2020)

    Article  ADS  Google Scholar 

  16. X. L. Zhang, P. W. Gong, F. Q. Liu, K. L. Yao, S. C. Zhu, and Y. Lu, Half-metallic of non-metal-adsorbed AsP and multifunctional two-dimensional spintronic device of impure AsP from first-principles calculations, Physica E 137, 115016 (2022)

    Article  Google Scholar 

  17. C. D. Zheng, K. Jiang, K. L. Yao, S. C. Zhu, and K. M. Wu, The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus, Phys. Chem. Chem. Phys. 23(43), 24570 (2021)

    Article  Google Scholar 

  18. S. C. Zhu, S. J. Peng, K. M. Wu, C. T. Yip, K. L. Yao, and C. H. Lam, Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons, Phys. Chem. Chem. Phys. 20(32), 21105 (2018)

    Article  Google Scholar 

  19. E. Balcı, Ü. Ö. Akkus, and S. Berber, Controlling topological electronic structure of multifunctional MXene layer, Appl. Phys. Lett. 113(8), 083107 (2018)

    Article  ADS  Google Scholar 

  20. E. Balcı, Ü. Ö. Akkus, and S. Berber, Band gap modification in doped MXene: Sc2CF2, J. Mater. Chem. C 5(24), 5956 (2017)

    Article  Google Scholar 

  21. G. Wang and Y. Liao, Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations, Appl. Surf. Sci. 07, 249 (2017)

    Google Scholar 

  22. S. Chen, J. Zhou, and Z. M. Sun, Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals, ACS Appl. Mater. Interfaces 7(31), 17510 (2015)

    Article  Google Scholar 

  23. G. Wang, Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene, J. Phys. Chem. C 120(33), 18850 (2016)

    Article  ADS  Google Scholar 

  24. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)

    Article  Google Scholar 

  25. M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, Electronic properties and applications of MXenes: A theoretical review, J. Mater. Chem. C 5(10), 2488 (2017)

    Article  Google Scholar 

  26. R. Qin, G. Shan, M. Hu, and W. Huang, Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors, Mater. Today Phys. 21, 100527 (2021)

    Article  Google Scholar 

  27. R. Z. Qin, X. Li, M. J. Hu, G. C. Shan, R. Seeram, and M. Yin, Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range, Sens. Actuators A Phys. 338, 113458 (2022)

    Article  Google Scholar 

  28. Q. Q. Kong, X. G. An, L. Huang, X. L. Wang, W. Feng, S. Y. Qiu, Q. Y. Wang, and C. H. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)

    Article  ADS  Google Scholar 

  29. G. Wang and Y. Liao, Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations, Appl. Surf. Sci. 426, 804 (2017)

    Article  ADS  Google Scholar 

  30. H. Kumar, N. C. Frey, L. Dong, B. Anasori, Y. Gogotsi, and V. B. Shenoy, Tunable magnetism and transport properties in nitride MXenes, ACS Nano 11(8), 7648 (2017)

    Article  Google Scholar 

  31. G. Y. Gao, G. Q. Ding, J. Li, K. L. Yao, M. H. Wu, and M. C. Qian, Monolayer MXenes: Promising half-metals and spin gapless semiconductors, Nanoscale 8(16), 8986 (2016)

    Article  ADS  Google Scholar 

  32. Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)

    Article  ADS  Google Scholar 

  33. X. X. Li, X. J. Wu, and J. L. Yang, Room-temperature half-metallicity in La (Mn,Zn)AsO alloy via element substitutions, J. Am. Chem. Soc. 136(15), 5664 (2014)

    Article  Google Scholar 

  34. J. J. He, P. Lyu, and P. Nachtigall, New two-dimensional Mn-based MXenes with room-temperature ferromag-netism and half-metallicity, J. Mater. Chem. C 4(47), 11143 (2016)

    Article  Google Scholar 

  35. J. H. Yang, S. Z. Zhang, A. P. Wang, R. N. Wang, C. K. Wang, G. P. Zhang, and L. Chen, High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes, Nanoscale 10(41), 19492 (2018)

    Article  Google Scholar 

  36. J. Yang, S. Fang, Y. Peng, S. Liu, B. Wu, R. Quhe, S. Ding, C. Yang, J. Ma, B. Shi, L. Xu, X. Sun, G. Tian, C. Wang, J. Shi, J. Lu, and J. Yang, Layer-dependent giant magnetoresistance in two-dimensional CrPS4 magnetic tunnel junctions, Phys. Rev. Appl. 16(2), 024011 (2021)

    Article  ADS  Google Scholar 

  37. L. F. Pan, L. Huang, M. Z. Zhong, X. W. Jiang, H. X. Deng, J. B. Li, J. B. Xia, and Z. M. Wei, Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X=Br, I) monolayers, Nanoscale 10(47), 22196 (2018)

    Article  Google Scholar 

  38. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)

    Article  ADS  Google Scholar 

  39. E. Balcı, Ü. Ö. Akkus, and S. Berber, High TMR in MXene-based Mn2CF2/Ti2CO2/Mn2CF2 magnetic tunneling junction, ACS Appl. Mater. Interfaces 11(3), 3609 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 11704291 and 51875417), Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (No. Y202101), and Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (No. 21YZ03). The work was supported by High-Performance Computing Center of Wuhan University of Science and Technology. We thank ShiXiao Wen from HZWTECH for help and discussions regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sicong Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, P., Liu, F. et al. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys. 17, 53510 (2022). https://doi.org/10.1007/s11467-022-1184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1184-z

Keywords

Navigation