Skip to main content
Log in

Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

With the development of modern electronics, especially the next generation of wearable electromagnetic interference (EMI) shielding materials requires flexibility, ultrathin, lightweight and robustness to protect electronic devices from radiation pollution. In this work, the flexible and ultrathin dopamine modified MXene@cellulose nanofiber (DM@CNF) composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach. The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film. By adjusting the layer number, the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m3 with a thickness about 19 µm. Interestingly that, the DM@CNF film with annealing treatment achieves significant improvement in conductivity (up to 17264 S·m−1) and EMI properties (SE of 41.90 dB and SSE/t of 10169 dB·cm2·g1), which still maintains relatively high mechanical properties. It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based, carbon-based and MXene-based shielding materials reported in the literature. These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shahzad, A. Iqbal, H. Kim, and C. M. Koo, 2D transition metal carbides (MXenes): Applications as an electrically conducting material, Adv. Mater. 32(51), 2002159 (2020)

    Article  Google Scholar 

  2. D. W. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. C. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. B. Wei, A. Subramania, and Z. H. Guo, Electromagnetic interference shielding polymers and nanocomposites — A review, Polym. Rev. (Phila. Pa.) 59(2), 280 (2019)

    Article  Google Scholar 

  3. C. Xiang, R. H. Guo, S. J. Lin, S. X. Jiang, J. W. Lan, C. Wang, C. Cui, H. Y. Xiao, and Y. Zhang, Lightweight and ultrathin TiO2−Ti3C2Tx/graphene film with electromagnetic interference shielding, Chem. Eng. J. 360, 1158 (2019)

    Article  Google Scholar 

  4. R. T. Liu, M. Miao, Y. H. Li, J. F. Zhang, S. M. Cao, and X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 10(51), 44787 (2018)

    Article  Google Scholar 

  5. H. Abbasi, M. Antunes, and J. I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding, Prog. Mater. Sci. 103, 319 (2019)

    Article  Google Scholar 

  6. M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R. K. Y. Li, Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)

    Article  ADS  Google Scholar 

  7. X. Li, G. C. Shan, R. G. Ma, C. H. Shek, H. B. Zhao, and S. Ramakrishna, Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications, Front. Phys. 17(6), 63501 (2022)

    Article  ADS  Google Scholar 

  8. B. Liu, L. Y. Qian, Y. L. Zhao, Y. W. Zhang, F. Liu, Y. Zhang, Y. Q. Xie, and W. Z. Shi, A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)

    Article  ADS  Google Scholar 

  9. B. Wen, M. S. Cao, M. M. Lu, W. Q. Cao, H. L. Shi, J. Liu, X. X. Wang, H. B. Jin, X. Y. Fang, W. Z. Wang, and J. Yuan, Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures, Adv. Mater. 26(21), 3484 (2014)

    Article  ADS  Google Scholar 

  10. B. Shen, W. T. Zhai, and W. G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater. 24(28), 4542 (2014)

    Article  Google Scholar 

  11. Y. Han, H. Zhong, N. Liu, Y. X. Liu, J. Lin, and P. Jin, In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding, Adv. Electron. Mater. 4(11), 1800156 (2018)

    Article  Google Scholar 

  12. Y. Z. Feng, B. Wang, X. W. Li, Y. S. Ye, J. M. Ma, C. T. Liu, X. P. Zhou, and X. L. Xie, Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis, Carbon 146, 650 (2019)

    Article  Google Scholar 

  13. Y. Z. Feng, G. J. Han, B. Wang, X. P. Zhou, J. M. Ma, Y. S. Ye, C. T. Liu, and X. L. Xie, Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy, Chem. Eng. J. 379, 122402 (2020)

    Article  Google Scholar 

  14. X. F. Meng, D. H. Li, X. Q. Shen, and W. Liu, Preparation and magnetic properties of nano-Ni coated cenosphere composites, Appl. Surf. Sci. 256(12), 3753 (2010)

    Article  ADS  Google Scholar 

  15. W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, Q. L. Zhao, and M. S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding, J. Mater. Chem. A 3(5), 2097 (2015)

    Article  Google Scholar 

  16. K. S. Novoselov, D. V. Andreeva, W. C. Ren, and G. C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)

    Article  ADS  Google Scholar 

  17. Y. C. Wang, L. H. Yao, Q. Zheng, and M. S. Cao, Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding, Nano Res. 15(7), 6751 (2022)

    Article  ADS  Google Scholar 

  18. M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, and J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon 48(3), 788 (2010)

    Article  Google Scholar 

  19. L. H. Yao, W. Q. Cao, J. G. Zhao, Q. Zheng, Y. C. Wang, S. Jiang, Q. L. Pan, J. Song, Y. Q. Zhu, and M. S. Cao, Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage, J. Mater. Sci. Technol. 127, 48 (2022)

    Article  Google Scholar 

  20. L. C. Jia, G. Q. Zhang, L. Xu, W. J. Sun, G. J. Zhong, J. Lei, D. X. Yan, and Z. M. Li, Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding, ACS Appl. Mater. Interfaces 11(1), 1680 (2019)

    Article  Google Scholar 

  21. L. C. Jia, C. G. Zhou, W. J. Sun, L. Xu, D. X. Yan, and Z. M. Li, Water-based conductive ink for highly efficient electromagnetic interference shielding coating, Chem. Eng. J. 384, 123368 (2020)

    Article  Google Scholar 

  22. L. C. Jia, K. Q. Ding, R. J. Ma, H. L. Wang, W. J. Sun, D. X. Yan, B. Li, and Z. M. Li, Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding, Adv. Mater. Technol. 4(2), 1800503 (2019)

    Article  Google Scholar 

  23. G. M. Weng, J. Y. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, and A. D. Taylor, Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding, Adv. Funct. Mater. 28(44), 1803360 (2018)

    Article  Google Scholar 

  24. M. Crespo, M. González, A. L. Elías, L. Pulickal Rajukumar, J. Baselga, M. Terrones, and J. Pozuelo, Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range, Phys. Status Solidi Rapid Res. Lett. 8(8), 698 (2014)

    Article  ADS  Google Scholar 

  25. Z. Li, L. Yu, C. Milligan, T. Ma, L. Zhou, Y. R. Cui, Z. Y. Qi, N. Libretto, B. Xu, J. W. Luo, E. Z. Shi, Z. W. Wu, H. L. Xin, W. N. Delgass, J. T. Miller, and Y. Wu, Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles, Nat. Commun. 9(1), 5258 (2018)

    Article  ADS  Google Scholar 

  26. M. R. Lukatskaya, S. Kota, Z. F. Lin, M. Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P. L. Taberna, M. Barsoum, P. Simon, and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy 2(8), 17105 (2017)

    Article  ADS  Google Scholar 

  27. B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)

    Article  ADS  Google Scholar 

  28. H. Lin, Y. Chen, and J. L. Shi, Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead, Adv. Sci. (Weinh.) 5(10), 1800518 (2018)

    Google Scholar 

  29. M. Carey and M. W. Barsoum, MXene polymer nanocomposites: A review, Mater. Today Adv. 9, 100120 (2021)

    Article  Google Scholar 

  30. J. Z. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. K. Han, W. R. Yang, J. Q. Liu, X. G. Wang, Y. Gogotsi, and J. M. Razal, Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity, Adv. Mater. 32(23), 2001093 (2020)

    Article  Google Scholar 

  31. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)

    Article  Google Scholar 

  32. C. Zhan, M. Naguib, M. Lukatskaya, P. R. C. Kent, Y. Gogotsi, and D. E. Jiang, Understanding the MXene pseudocapacitance, J. Phys. Chem. Lett. 9(6), 1223 (2018)

    Article  Google Scholar 

  33. J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)

    Article  ADS  Google Scholar 

  34. J. Liu, H. B. Zhang, R. H. Sun, Y. F. Liu, Z. S. Liu, A. G. Zhou, and Z. Z. Yu, Hydrophobic, flexible, and lightweight MXene Foams for high-performance electromagnetic-interference shielding, Adv. Mater. 29(38), 1702367 (2017)

    Article  Google Scholar 

  35. Z. L. Ma, S. L. Kang, J. Z. Ma, L. Shao, Y. L. Zhang, C. Liu, A. J. Wei, X. L. Xiang, L. F. Wei, and J. W. Gu, Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding, ACS Nano 14(7), 8368 (2020)

    Article  Google Scholar 

  36. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353(6304), 1137 (2016)

    Article  ADS  Google Scholar 

  37. O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’ Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4(1), 1716 (2013)

    Article  ADS  Google Scholar 

  38. B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N. J. Alvarez, E. C. Kumbur, and Y. Gogotsi, Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes, ACS Nano 12(3), 2685 (2018)

    Article  Google Scholar 

  39. Y. J. Wan, X. M. Li, P. L. Zhu, R. Sun, C. P. Wong, and W. H. Liao, Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding, Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020)

    Article  Google Scholar 

  40. H. Z. Huang, X. F. Sha, Y. Cui, S. Y. Sun, H. Y. Huang, Z. Y. He, M. Y. Liu, N. G. Zhou, X. Y. Zhang, and Y. Wei, Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry, J. Colloid Interface Sci. 567, 190 (2020)

    Article  ADS  Google Scholar 

  41. L. Y. Yang, J. Cui, L. Zhang, X. R. Xu, X. Chen, and D. P. Sun, A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film, Adv. Funct. Mater. 31(27), 2101378 (2021)

    Article  Google Scholar 

  42. W. T. Cao, C. Ma, S. Tan, M. G. Ma, P. B. Wan, and F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding, Nano-Micro Lett. 11(1), 72 (2019)

    Article  ADS  Google Scholar 

  43. J. H. Chen, J. K. Xu, K. Wang, X. R. Qian, and R. C. Sun, Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles, ACS Appl. Mater. Interfaces 7(28), 15641 (2015)

    Article  Google Scholar 

  44. L. Q. Zhang, S. G. Yang, L. Li, B. Yang, H. D. Huang, D. X. Yan, G. J. Zhong, L. Xu, and Z. M. Li, Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding, ACS Appl. Mater. Interfaces 11(2), 2559 (2019)

    Article  Google Scholar 

  45. W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma, and F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties, ACS Nano 12(5), 4583 (2018)

    Article  Google Scholar 

  46. J. L. Hart, K. Hantanasirisakul, A. C. Lang, B. Anasori, D. Pinto, Y. Pivak, J. T. van Omme, S. J. May, Y. Gogotsi, and M. L. Taheri, Control of MXenes’ electronic properties through termination and intercalation, Nat. Commun. 10(1), 522 (2019)

    Article  ADS  Google Scholar 

  47. G. S. Lee, T. Yun, H. Kim, I. H. Kim, J. Choi, S. H. Lee, H. J. Lee, H. S. Hwang, J. G. Kim, D. W. Kim, H. M. Lee, C. M. Koo, and S. O. Kim, Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability, ACS Nano 14(9), 11722 (2020)

    Article  Google Scholar 

  48. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, and Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29(18), 7633 (2017)

    Article  Google Scholar 

  49. B. Zhou, Z. Zhang, Y. L. Li, G. J. Han, Y. Z. Feng, B. Wang, D. B. Zhang, J. M. Ma, and C. T. Liu, Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers, ACS Appl. Mater. Interfaces 12(4), 4895 (2020)

    Article  Google Scholar 

  50. W. Z. Bao, X. Tang, X. Guo, S. Choi, C. Y. Wang, Y. Gogotsi, and G. X. Wang, Porous cryo-dried MXene for efficient capacitive deionization, Joule 2(4), 778 (2018)

    Article  Google Scholar 

  51. J. W. Fu, Z. H. Chen, M. H. Wang, S. J. Liu, J. H. Zhang, J. N. Zhang, R. P. Han, and Q. Xu, Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis, Chem. Eng. J. 259, 53 (2015)

    Article  Google Scholar 

  52. Y. Zhang, W. H. Cheng, W. X. Tian, J. Y. Lu, L. Song, K. M. Liew, B. B. Wang, and Y. Hu, Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance, ACS Appl. Mater. Interfaces 12(5), 6371 (2020)

    Article  Google Scholar 

  53. Z. H. Zhou, Q. C. Song, B. X. Huang, S. Y. Feng, and C. H. Lu, Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance, ACS Nano 15(7), 12405 (2021)

    Article  Google Scholar 

  54. X. F. Zhao, D. E. Holta, Z. Y. Tan, J. H. Oh, I. J. Echols, M. Anas, H. X. Cao, J. L. Lutkenhaus, M. Radovic, and M. J. Green, Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings, ACS Appl. Nano Mater. 3(11), 10578 (2020)

    Article  Google Scholar 

  55. Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong, and W. H. Liao, Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding, Small 14(27), 1800534 (2018)

    Article  Google Scholar 

  56. S. H. Ryu, Y. K. Han, S. J. Kwon, T. Kim, B. M. Jung, S. B. Lee, and B. Park, Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite, Chem. Eng. J. 428, 131167 (2022)

    Article  Google Scholar 

  57. L. Feng, Y. Zuo, X. He, X. J. Hou, Q. G. Fu, H. J. Li, and Q. Song, Development of light cellular carbon nanotube@graphene/carbon nanocomposites with effective mechanical and EMI shielding performance, Carbon 168, 719 (2020)

    Article  Google Scholar 

  58. R. T. Liu, M. Miao, Y. H. Li, J. F. Zhang, S. M. Cao, and X. Feng, Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 10(51), 44787 (2018)

    Article  Google Scholar 

  59. R. S. Li, L. Ding, Q. Gao, H. M. Zhang, D. Zeng, B. A. Zhao, B. B. Fan, and R. Zhang, Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene, Chem. Eng. J. 415, 128930 (2021)

    Article  Google Scholar 

  60. Z. S. Liu, Y. Zhang, H. B. Zhang, Y. Dai, J. Liu, X. F. Li, and Z. Z. Yu, Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding, J. Mater. Chem. C 8(5), 1673 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB3807200), the National Natural Science Foundation of China (Nos. 52201022 and 21973012), the Natural Science Foundation of Fujian Province (Nos. 2020J01474, 2021J06011, and 2020J01351), and the “Qishan Scholar” Scientific Research Startup Project of Fuzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuilian Wen or Baisheng Sa.

Additional information

Conflicts of interest

The authors declare no competing financial interest.

Supporting Information

11467_2022_1234_MOESM1_ESM.pdf

Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance

Supplementary material, approximately 5.63 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Liu, H., Chen, Z. et al. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Front. Phys. 18, 33300 (2023). https://doi.org/10.1007/s11467-022-1234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1234-6

Keywords

Navigation