Skip to main content
Log in

A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Broadband, self-power, and polarization-sensitivity are desirable qualities for a photodetector. However, currently few photodetectors can fulfill these requirements simultaneously. Here, we propose a Ti3C2Tx (MXene) photodetector that is driven by the photogalvanic effect with impressive performances. A polarization-sensitive photocurrent is generated at zero bias under the illumination of linearly polarized laser light of 1064 nm, with an extinction ratio of 1.11. Meanwhile, a fast response with a 32/28 ms rise/decay time and a large on/off switching ratio of 120 are achieved. Besides, a robust zero-bias photocurrent is also generated in the photodetector under the illumination of 940 and 620 nm light, as well as the white light, showing a broadband photoresponse from the near-infrared to visible. Moreover, quantum transport simulations indicate that the photogalvanic effect plays an important role in the generation of the polarized photocurrent at zero bias due to the broken space inversion symmetry of the stacked few-layer Ti3C2Tx. Our results shed light on a potential application of the Ti3C2Tx—MXene in the low-power photodetection with high performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. I. Alzakia, B. S. Tang, S. J. Pennycook, and S. C. Tan, Engineering the photoresponse of liquid-exfoliated 2D materials by size selection and controlled mixing for an ultrasensitive and ultraresponsive photodetector, Mater. Horiz. 7(12), 3325 (2020)

    Article  Google Scholar 

  2. M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8(10), 3498 (2008)

    Article  ADS  Google Scholar 

  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  4. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  5. L. Song, L. J. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10(8), 3209 (2010)

    Article  ADS  Google Scholar 

  6. A. A. Hussain, Constructing caesium-based lead-free perovskite photodetector enabling self-powered operation with extended spectral response, ACS Appl. Mater. Interfaces 12(41), 46317 (2020)

    Article  Google Scholar 

  7. S. Qiao, Y. Liu, J. H. Liu, G. S. Fu, and S. F. Wang, High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region, ACS Appl. Mater. Interfaces 13(29), 34625 (2021)

    Article  Google Scholar 

  8. H. Kan, W. Zheng, R. C. Lin, M. Li, C. Fu, H. B. Sun, M. Dong, C. H. Xu, J. T. Luo, Y. Q. Fu, and F. Huang, Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions, ACS Appl. Mater. Interfaces 11(8), 8412 (2019)

    Article  Google Scholar 

  9. X. T. Zhang, X. M. Yao, Z. Y. Li, C. Zhou, X. M. Yuan, Z. Tang, W. D. Hu, X. T. Gan, J. Zou, P. P. Chen, and W. Lu, Surface-states-modulated high-performance InAs nanowire phototransistor, J. Phys. Chem. Lett. 11(15), 6413 (2020)

    Article  Google Scholar 

  10. X. T. Zhang, H. Huang, X. M. Yao, Z. Y. Lo, C. Zhou, X. Zhang, P. P. Chen, L. Fu, X. H. Zhou, J. L. Wang, W. D. Hu, W. Lu, J. Zou, H. H. Tan, and C. Jagadish, Ultrasensitive mid-wavelength infrared photodetection based on a single In As nanowire, ACS Nano 13(3), 3492 (2019)

    Article  Google Scholar 

  11. C. Guo, Y. B. Hu, G. Chen, D. C. Wei, L. B. Zhang, Z. Q. Z. Chen, W. L. Guo, H. Xu, C. N. Kuo, C. S. Lue, X. Y. Bo, X. G. Wan, L. Wang, A. Politano, X. S. Chen, and W. Lu, Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6(36), eabb6500 (2020)

    Article  ADS  Google Scholar 

  12. L. Tong, X. Y. Huang, P. Wang, L. Ye, M. Peng, L. C. An, Q. D. Sun, Y. Zhang, G. M. Yang, Z. Li, F. Zhong, F. Wang, Y. X. Wang, M. Motlag, W. Z. Wu, G. J. Cheng, and W. D. Hu, Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature, Nat. Commun. 11(1), 2308 (2020)

    Article  ADS  Google Scholar 

  13. S. Feng, C. Liu, Q. B. Zhu, X. Su, W. W. Qian, Y. Sun, C. X. Wang, B. Li, M. L. Chen, L. Chen, W. Chen, L. L. Zhang, C. Zhen, F. J. Wang, W. C. Ren, L. C. Yin, X. M. Wang, H. M. Cheng, and D. M. Sun, An ultrasensitive molybdenum-based double-heterojunction phototransistor, Nat. Commun. 12(1), 4094 (2021)

    Article  ADS  Google Scholar 

  14. Y. S. Yang, S. C. Liu, W. Yang, Z. B. Li, Y. Wang, X. Wang, S. S. Zhang, Y. Zhang, M. S. Long, G. M. Zhang, D. J. Xue, J. S. Hu, and L. J. Wan, Air-stable inplane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region, J. Am. Chem. Soc. 140(11), 4150 (2018)

    Article  Google Scholar 

  15. J. Bullock, M. Amani, J. Cho, Y. Z. Chen, G. H. Ahn, V. Adinolfi, V. R. Shrestha, Y. Gao, K. B. Crozier, Y. L. Chueh, and A. Javey, Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature, Nat. Photonics 12(10), 601 (2018)

    Article  ADS  Google Scholar 

  16. Y. Xin, X. X. Wang, Z. Chen, D. Weller, Y. Y. Wang, L. J. Shi, X. Ma, C. J. Ding, W. Li, S. Guo, and R. B. Liu, Polarization-sensitive self-powered type-II GeSe/Mo S2 Van Der Waals heterojunction photodetector, ACS Appl. Mater. Interfaces 12(13), 15406 (2020)

    Article  Google Scholar 

  17. C. M. Ji, D. Dey, Y. Peng, X. T. Liu, L. N. Li, and J. H. Luo, Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite, Angew. Chem. Int. Ed. 59(43), 18933 (2020)

    Article  Google Scholar 

  18. Y. Peng, X. T. Liu, Z. H. Sun, C. M. Ji, L. N. Li, Z. Y. Wu, S. S. Wang, Y. P. Yao, M. C. Hong, and J. H. Luo, Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light detection, Angew. Chem. Int. Ed. 59(10), 3933 (2020)

    Article  Google Scholar 

  19. D. Wu, J. W. Guo, J. Du, C. X. Xia, L. H. Zeng, Y. Z. Tian, Z. F. Shi, Y. T. Tian, X. J. Li, Y. H. Tsang, and J. S. Jie, Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13(9), 9907 (2019)

    Article  Google Scholar 

  20. Y. Q. Xie, L. Zhang, Y. Zhu, L. Liu, and H. Guo, Photogalvanic effect in monolayer black phosphorus, Nanotechnology 26(45), 455202 (2015)

    Article  ADS  Google Scholar 

  21. F. H. Chu, M. Y. Chen, Y. Wang, Y. Q. Xie, B. Y. Liu, Y. H. Yang, X. T. An, and Y. Z. Zhang, A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy, J. Mater. Chem. C 6(10), 2509 (2018)

    Article  Google Scholar 

  22. Y. S. Yang, S. C. Liu, X. Wang, Z. B. Li, Y. Zhang, G. M. Zhang, D. J. Xue, and J. S. Hu, Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2, Adv. Funct. Mater. 29(16), 1900411 (2019)

    Article  Google Scholar 

  23. Y. Z. Luo, Y. B. Hu, and Y. Q. Xie, Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: A theoretical prediction, J. Mater. Chem. A 7(48), 27503 (2019)

    Article  Google Scholar 

  24. L. Y. Qian, J. Zhao, and Y. Q. Xie, Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress, Front. Phys. 17(1), 13502 (2022)

    Article  ADS  Google Scholar 

  25. V. Belinicher and B. I. Sturman, The photogalvanic effect in media lacking a center of symmetry, Sov. Phys. Usp. 23(3), 199 (1980)

    Article  ADS  Google Scholar 

  26. S. M. Young, F. Zheng, and A. M. Rappe, First-principles calculation of the bulk photovoltaic effect in bismuth ferrite, Phys. Rev. Lett. 109(23), 236601 (2012)

    Article  ADS  Google Scholar 

  27. U. Bajpai, B. S. Popescu, P. Plechac, B. K. Nikolić, L. Torres, H. Ishizuka, and N. Nagaosa, Spatio-temporal dynamics of shift current quantum pumping by femtosecond light pulse, J. Phys. Mater. 2(2), 025004 (2019)

    Article  Google Scholar 

  28. S. Hubmann, G. V. Budkin, M. Otteneder, D. But, D. Sacre, I. Yahniuk, K. Diendorfer, V. V. Bel’kov, D. A. Kozlov, N. N. Mikhailov, S. A. Dvoretsky, V. S. Varavin, V. G. Remesnik, S. A. Tarasenko, W. Knap, and S. D. Ganichev, Symmetry breaking and circular photogalvanic effect in epitaxial CdxHg1xTe films, Phys. Rev. Mater. 4(4), 043607 (2020)

    Article  Google Scholar 

  29. Y. Z. Luo, Y. Q. Xie, J. Zhao, Y. B. Hu, X. Ye, and S. H. Ke, Perfect in-plane CrI3 spin-valve driven by photogalvanic effect, Phys. Rev. Mater. 5(5), 054004 (2021)

    Article  ADS  Google Scholar 

  30. L. F. Gao, W. L. Bao, A. V. Kuklin, S. Mei, H. Zhang, and H. Agren, Hetero—MXenes: Theory, synthesis, and emerging applications, Adv. Mater. 33(10), 2004129 (2021)

    Article  Google Scholar 

  31. S. Y. Pang, Y. T. Wong, S. G. Yuan, Y. Liu, M. K. Tsang, Z. B. Yang, H. T. Huang, W. T. Wong, and J. H. Hao, Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials, J. Am. Chem. Soc. 141(24), 9610 (2019)

    Article  Google Scholar 

  32. K. J. Griffith, M. A. Hope, P. J. Reeves, M. Anayee, Y. Gogotsi, and C. P. Grey, Bulk and surface chemistry of the niobium MAX and MXene phases from multinuclear solid-state NMR spectroscopy, J. Am. Chem. Soc. 142(44), 18924 (2020)

    Article  Google Scholar 

  33. J. Y. Sui, X. F. Chen, Y. Li, W. C. Peng, F. B. Zhang, and X. B. Fan, MXene derivatives: Synthesis and applications in energy convention and storage, RSC Adv. 11(26), 16065 (2021)

    Article  ADS  Google Scholar 

  34. J. X. Chen, Z. L. Li, F. L. Ni, W. X. Ouyang, and X. S. Fang, Bio-inspired transparent MXene electrodes for flexible UV photodetectors, Mater. Horiz. 7(7), 1828 (2020)

    Article  Google Scholar 

  35. S. Chertopalov and V. N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films, ACS Nano 12(6), 6109 (2018)

    Article  Google Scholar 

  36. A. B. Ren, J. H. Zou, H. G. Lai, Y. X. Huang, L. M. Yuan, H. Xu, K. Shen, H. Wang, S. Y. Wei, Y. F. Wang, X. Hao, J. Q. Zhang, D. W. Zhao, J. Wu, and Z. M. Wang, Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection, Mater. Horiz. 7(7), 1901 (2020)

    Article  Google Scholar 

  37. S. L. Zhang and W. Q. Han, Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering, Phys. Chem. Chem. Phys. 22(29), 16482 (2020)

    Article  Google Scholar 

  38. H. T. Chen, A. D. Handoko, T. S. Wang, J. L. Qu, J. W. Xiao, X. P. Liu, D. Legut, Z. W. Seh, and Q. F. Zhang, Defect-enhanced CO2 reduction catalytic performance in O-terminated MXenes, Chemsuschem 13(21), 5690 (2020)

    Article  Google Scholar 

  39. J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)

    Article  ADS  Google Scholar 

  40. J. T. Zhu, H. Wang, L. Ma, and G. F. Zou, Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure, Nano Res. 14, 3416 (2021)

    Article  ADS  Google Scholar 

  41. W. X. Huo, Z. A. Zhang, Z. L. Wang, Z. Y. Wu, J. M. Li, Y. Chai, and X. Huang, Large-area transient conductive films obtained through photonic sintering of 2D materials, Adv. Mater. Technol. 7(2), 2100439 (2021)

    Article  Google Scholar 

  42. X. H. Zha, K. Luo, Q. W. Li, Q. Huang, J. He, X. D. Wen, and S. Y. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes, Europhys. Lett. 111(2), 26007 (2015)

    Article  ADS  Google Scholar 

  43. G. R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene, Europhys. Lett. 111(6), 67002 (2015)

    Article  ADS  Google Scholar 

  44. O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4(1), 1716 (2013)

    Article  ADS  Google Scholar 

  45. K. Maleski, V. N. Mochalin, and Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents, Chem. Mater. 29(4), 1632 (2017)

    Article  Google Scholar 

  46. Q. Zou, W. Y. Guo, L. Zhang, L. T. Yang, Z. Y. Zhao, F. Liu, X. Ye, Y. Zhang, and W. Z. Shi, MXene-based ultrathin film for terahertz radiation shielding, Nanotechnology 31(50), 505710 (2020)

    Article  ADS  Google Scholar 

  47. Q. Kong, X. An, L. Huang, X. Wang, W. Feng, S. Qiu, Q. Wang, and C. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16(5), 1 (2021)

    Google Scholar 

  48. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)

    Article  ADS  Google Scholar 

  49. C. Guo, Y. Hu, G. Chen, D. Wei, L. Zhang, Z. Chen, W. Guo, H. Xu, C. N. Kuo, C. S. Lue, X. Bo, X. Wan, L. Wang, A. Politano, X. Chen, and W. Lu, Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6(36), eabb6500 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12073018, 51871156, U2031128, and 61904107), the State Key Program of National Natural Science of China (No. U1931205), and Shanghai Natural Science Foundation (No. 22ZR1446100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Yiqun Xie.

Additional information

Special Topic: MXene and Its Applications (Eds.: Qing Huang, Ju Han Lee & Guangcun Shan). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1156-3.

Supporting Information

11467_2022_1156_MOESM1_ESM.pdf

A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Qian, L., Zhao, Y. et al. A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects. Front. Phys. 17, 53501 (2022). https://doi.org/10.1007/s11467-022-1156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1156-3

Keywords

Navigation