Skip to main content
Log in

Characteristics of sand avalanche motion and deposition influenced by proportion of fine particles

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Rock avalanches have become a hot spot in the field of geological hazards due to their flow features and long run-out distance. These features are closely related to the mass ratio parameter mr (the proportion of fine particles to the total mass). To explore the influence on the kinetic parameters and deposit morphology of rock avalanches by mr, a tabletop apparatus was developed to conduct sand avalanche experiments. Direct shear tests were performed to provide strength parameters of sand and sand–plate interface systematically. The results show that with the decrease of mean particle size D50, the internal friction angle increases first and then decreases, but the opposite trend has been observed for the friction angle of sand–plate interface. The addition of fine particles smaller than 0.075 mm makes the motion behavior of the sliding mass different. With the increase of mr, the motion of sand avalanches changes from frictional flows to viscous flows. In addition, a critical mass ratio parameter is proposed. The critical mass ratio parameter increases with the increased range of particle sizes. This research supports the study of avalanche events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in this paper.

References

  1. Baselt I, de Oliveira GQ, Fischer J-T, Pudasaini SP (2022) Deposition morphology in large-scale laboratory stony debris flows. Geomorphology 396:107992. https://doi.org/10.1016/j.geomorph.2021.107992

    Article  Google Scholar 

  2. Bruni G (2006) An investigation of the influence of fines distribution and high temperature on the fluidization behaviour of gas fluidized beds linked with rheological studies. Journal of Organic Chemistry, 77(22):177–177. https://discovery.ucl.ac.uk/id/eprint/1444356

  3. Chao Z, Yu Q, Dave RN, Pfeffer R (2010) Gas fluidization characteristics of nanoparticle agglomerates. AIChE J 51(2):426–439. https://doi.org/10.1002/aic.10319

    Article  Google Scholar 

  4. Chen S, Li S, Liu W, Makse HA (2016) Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles. Soft Matter 126:1836–1846. https://doi.org/10.1039/C5SM02403J

    Article  Google Scholar 

  5. Chiapolino A, Saurel R (2020) Numerical investigations of two-phase finger-like instabilities. Comput Fluids 206:104585. https://doi.org/10.1016/j.compfluid.2020.104585

    Article  MathSciNet  MATH  Google Scholar 

  6. Craig RF (2004) Craig’s Soil Mechanics. Spon Press, London

    Book  Google Scholar 

  7. Crosta GB, Blasio FVD, Caro MD, Volpi G, Imposimato S, Roddeman D (2017) Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study. Landslides 14(1):47–68. https://doi.org/10.1007/s10346-016-0697-3

    Article  Google Scholar 

  8. Crosta GB, Blasio FVD, Locatelli M, Imposimato S, Roddeman D (2015) Landslides falling onto a shallow erodible substrate or water layer: an experimental and numerical approach. IOP Conf Series: Earth Environ Sci 26(1):012004. https://doi.org/10.1088/1755-1315/26/1/012004

    Article  Google Scholar 

  9. De Haas T, Braat L, Leuven JRFW, Lokhorst IR, Kleinhans MG (2015) Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. J Geophys Res Earth Surf 120(9):1949–1972. https://doi.org/10.1002/2015jf003525

    Article  Google Scholar 

  10. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Research: Solid Earth. https://doi.org/10.1029/2000JB900330

    Article  Google Scholar 

  11. Dong KJ, Yang RY, Zou RP, Yu AB (2006) Role of interparticle forces in the formation of random loose packing. Phys Rev Lett 96(14):145505. https://doi.org/10.1103/PhysRevLett.96.145505

    Article  Google Scholar 

  12. Duan Z, Cheng W-C, Peng J-B, Rahman MM, Tang H (2021) Interactions of landslide deposit with terrace sediments: perspectives from velocity of deposit movement and apparent friction angle. Eng Geol 280(1):105913. https://doi.org/10.1016/j.enggeo.2020.105913

    Article  Google Scholar 

  13. Duan Z, Cheng WC, Peng JB, Wang QY, Chen W (2019) Investigation into the triggering mechanism of loess landslides in the south Jingyang platform, Shaanxi province. Bull Eng Geol Env 78(7):4919–4930. https://doi.org/10.1007/s10064-018-01432-8

    Article  Google Scholar 

  14. Duan Z, Wu YB, Tang H, Ma JQ, Zhu XH (2020) An analysis of factors affecting flowslide deposit morphology using taguchi method. Adv Civil Eng 2020:8844722. https://doi.org/10.1155/2020/8844722

    Article  Google Scholar 

  15. Dufresne A, Dunning SA (2017) Process dependence of grain size distributions in rock avalanche deposits. Landslides 14(5):1555–1563. https://doi.org/10.1007/s10346-017-0806-y

    Article  Google Scholar 

  16. Edwards AN, Gray JMNT (2014) Erosion–deposition waves in shallow granular free-surface flows. J Fluid Mech 762:35–67. https://doi.org/10.1017/jfm.2014.643

    Article  MathSciNet  Google Scholar 

  17. Eid HT, Amarasinghe RS, Rabie KH, Wijewickreme D (2014) Residual shear strength of fine-grained soils and soil–solid interfaces at low effective normal stresses. Can Geotech J 52(2):198–210. https://doi.org/10.1139/cgj-2014-0019

    Article  Google Scholar 

  18. Fan RL, Zhang LM, Wang HJ, Fan XM (2018) Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake. Eng Geol 235:1–10. https://doi.org/10.1016/j.enggeo.2018.01.017

    Article  Google Scholar 

  19. Fan X-y, Tian S-j, Zhang Y-y (2016) Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation. J Mt Sci 13(2):234–245. https://doi.org/10.1007/s11629-014-3396-3

    Article  Google Scholar 

  20. Farin M, Mangeney A, Roche O (2014) Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J Geophys Res Earth Surf 119(3):504–532. https://doi.org/10.1002/2013jf002750

    Article  Google Scholar 

  21. Geldart D (1973) Types of gas fluidization. Powder Technol 7(5):285–292. https://doi.org/10.1016/0032-5910(73)80037-3

    Article  Google Scholar 

  22. Getahun E, Qi SW, Guo SF, Zou Y, Liang N (2019) Characteristics of grain size distribution and the shear strength analysis of Chenjiaba long runout coseismic landslide. J Mt Sci 16(9):2110–2125. https://doi.org/10.1007/s11629-019-5535-3

    Article  Google Scholar 

  23. Glicken H (1980) Rockslide-debris avalanche of May 18, Mount St Helens Volcano, Washington https://doi.org/10.3133/ofr96677

  24. Guo X, Peng C, Wu W, Wang Y (2021) Unified constitutive model for granular–fluid mixture in quasi-static and dense flow regimes. Acta Geotech 16(3):775–787. https://doi.org/10.1007/s11440-020-01044-1

    Article  Google Scholar 

  25. Gupta AK (2016) Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test. J Rock Mech Geotech Eng 8(3):378–388. https://doi.org/10.1016/j.jrmge.2015.12.005

    Article  Google Scholar 

  26. Han M (2015) Characterization of fine particle fluidization. Materials Science, 135(10):583–590. https://ir.lib.uwo.ca/etd/3073

  27. Hu YX, Li HB, Qi SC, Fan G, Zhou JW (2020) Granular effects on depositional processes of debris avalanches. KSCE J Civ Eng 24(4):1116–1127. https://doi.org/10.1007/s12205-020-1555-3

    Article  Google Scholar 

  28. Ip TTL (1988) Influence of particle size distribution on fluidized bed hydrodynamics. In Chemical Engineering. University of British Columbia: University of British Columbia. http://hdl.handle.net/2429/27891

  29. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2010) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121. https://doi.org/10.1038/ngeo1040

    Article  Google Scholar 

  30. Juang CH, Dijkstra T, Wasowski J, Meng X (2019) Loess geohazards research in China: advances and challenges for mega engineering projects. Eng Geol 251:1–10. https://doi.org/10.1016/j.enggeo.2019.01.019

    Article  Google Scholar 

  31. Kesseler M, Heller V, Turnbull B (2018) A laboratory-numerical approach for modelling scale effects in dry granular slides. Landslides 15(11):2145–2159. https://doi.org/10.1007/s10346-018-1023-z

    Article  Google Scholar 

  32. Kim D, Ha S (2014) Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid. Materials (Basel) 7(2):963–979. https://doi.org/10.3390/ma7020963

    Article  Google Scholar 

  33. Linares-Guerrero E, Goujon C, Zenit R (2007) Increased mobility of bidisperse granular avalanches. J Fluid Mech 593:475–504. https://doi.org/10.1017/s0022112007008932

    Article  MATH  Google Scholar 

  34. Lucas A, Mangeney A (2007) Mobility and topographic effects for large valles marineris landslides on Mars. Geophys Res Lett 34:L10201. https://doi.org/10.1029/2007GL029835

    Article  Google Scholar 

  35. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat Commun 5(1):1–9. https://doi.org/10.1038/ncomms4417

    Article  Google Scholar 

  36. Ma PH, Peng JB, Wang QY, Duan Z, Meng ZJ, Jianqi Z (2019) Loess landslides on the South Jingyang Platform in Shaanxi Province, China. Q J Eng GeolHydrogeol 52(4):547–556. https://doi.org/10.1144/qjegh2018-115

    Article  Google Scholar 

  37. Makris S, Manzella I, Cole P, Roverato M (2020) Grain size distribution and sedimentology in volcanic mass-wasting flows: implications for propagation and mobility. Int J Earth Sci 109:2679–2695. https://doi.org/10.1007/s00531-020-01907-8

    Article  Google Scholar 

  38. Manzella I, Labiouse V (2008) Extension of the fringe projection method to measure shape and position of the centre of mass of granular flow deposit. 12th International conference of the international association for computer methods and advances in geomechanics: 4547–4554. https://archive-ouverte.unige.ch/unige:40397

  39. Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158. https://doi.org/10.1016/j.enggeo.2008.11.006

    Article  Google Scholar 

  40. Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10:23–26. https://doi.org/10.1007/s10346-011-0313-5

    Article  Google Scholar 

  41. Marks B, Rognon P, Einav I (2012) Grainsize dynamics of polydisperse granular segregation down inclined planes. J Fluid Mech 690:499–511. https://doi.org/10.1017/jfm.2011.454

    Article  MathSciNet  MATH  Google Scholar 

  42. Mello NMP, Paiva HA, Combe G, Atman APF (2017) Fingering phenomena during grain–grain displacement. Computational Particle Mechanics 4(2):153–164. https://doi.org/10.1007/s40571-016-0113-8

    Article  Google Scholar 

  43. Mergili M, Jaboyedoff M, Pullarello J, Pudasaini SP (2020) Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn. Nat Hazar Earth Syst Sci, 20(2):505-520. https://doi.org/10.5194/nhess-20-505-2020

  44. Moro F, Faug T, Bellot H, Ousset F (2010) Large mobility of dry snow avalanches: insights from small-scale laboratory tests on granular avalanches of bidisperse materials. Cold Reg Sci Technol 62(1):55–66. https://doi.org/10.1016/j.coldregions.2010.02.011

    Article  Google Scholar 

  45. Morrissey MM, Savage WZ, Wieczorek GF (1999) Air blasts generated by rockfall impacts: analysis of the 1996 Happy Isles event in Yosemite National Park. J Geophys Research B: Solid Earth 104(B10):23189–23198. https://doi.org/10.1029/1999JB900189

    Article  Google Scholar 

  46. Novotný J, Klimeš J (2014) Grain size distribution of soils within the Cordillera Blanca, Peru: an indicator of basic mechanical properties for slope stability evaluation. J Mt Sci 11(3):563–577. https://doi.org/10.1007/s11629-013-2836-9

    Article  Google Scholar 

  47. Okura Y, Kitahara H, Kawanami A, Kurokawa U (2003) Topography and volume effects on travel distance of surface failure. Eng Geol 67:243–254. https://doi.org/10.1016/S0013-7952(02)00183-7

    Article  Google Scholar 

  48. Parteli EJ, Schmidt J, Bluemel C, Wirth K, Peukert W, Pöschel T (2014) Attractive particle interaction forces and packing density of fine glass powders. Sci Rep. https://doi.org/10.1038/srep06227

    Article  Google Scholar 

  49. Phillips JC, Hogg AJ, Kerswell RR, Thomas NH (2006) Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet Sci Lett 246(3):466–480. https://doi.org/10.1016/j.epsl.2006.04.007

    Article  Google Scholar 

  50. Pouliquen O, Delour J, Savage SB (1997) Fingering in granular flows. Nature 386(6627):816–817. https://doi.org/10.1038/386816a0

    Article  Google Scholar 

  51. Pouliquen O, Vallance JW (1999) Segregation induced instabilities of granular fronts. Chaos 9(3):621–630

    Article  MATH  Google Scholar 

  52. Pudasaini SP, Krautblatter M (2021) The mechanics of landslide mobility with erosion. Nat Commun 12(1):6793. https://doi.org/10.1038/s41467-021-26959-5

    Article  Google Scholar 

  53. Pudasaini SP, Mergili M (2019) A multi-phase mass flow model. J Geophys Res Earth Surf 124(12):2920–2942. https://doi.org/10.1029/2019JF005204

    Article  Google Scholar 

  54. Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157(1):124–132. https://doi.org/10.1016/j.enggeo.2013.01.012

    Article  Google Scholar 

  55. Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Schwanghart W, McBride S, de Vries MVW, Mergili M, Emmer A, Deschamps-Berger C, McDonnell M, Bhambri R, Allen S, Berthier E, Carrivick JL, Clague JJ, Dokukin M, Dunning SA, Frey H, Gascoin S, Haritashya UK, Huggel C, Kääb A, Kargel JS, Kavanaugh JL, Lacroix P, Petley D, Rupper S, Azam MF, Cook SJ, Dimri AP, Eriksson M, Farinotti D, Fiddes J, Gnyawali KR, Harrison S, Jha M, Koppes M, Kumar A, Leinss S, Majeed U, Mal S, Muhuri A, Noetzli J, Paul F, Rashid I, Sain K, Steiner J, Ugalde F, Watson CS, Westoby MJ (2021) A massive rock and ice avalanche caused the 2021 disaster at Chamoli. Ind Himal Sci 373(6552):300–306. https://doi.org/10.1126/science.abh4455

    Article  Google Scholar 

  56. Su LJ, Zhou WH, Chen WB, Jie X (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement. https://doi.org/10.1016/j.measurement.2018.03.003

    Article  Google Scholar 

  57. Su LJ, Zhou WH, Chen WB, Jie X (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement 122:339–346. https://doi.org/10.1016/j.measurement.2018.03.003

    Article  Google Scholar 

  58. Taha H, Nguyen NS, Marot D, Hijazi A, Abou-Saleh K (2019) Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials. Granular Matter 21(2):28. https://doi.org/10.1007/s10035-019-0867-9

    Article  Google Scholar 

  59. Vangla P, Latha GM (2015) Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. Int J Geosyn Ground Eng 1(6):1–12. https://doi.org/10.1007/s40891-014-0008-9

    Article  Google Scholar 

  60. Wang HL, Zhou WH, Yin ZY, Jie XX (2019) Effect of grain size distribution of sandy soil on shearing behaviors at soil-structure interface. J Mater Civ Eng 31(10):04019238. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002880

    Article  Google Scholar 

  61. Wang JJ, Zhang HP, Tang SC, Liang Y (2013) Effects of particle size distribution on shear strength of accumulation soil. J Geotech Geoenviron Eng 139:1994–1997. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000931

    Article  Google Scholar 

  62. Woodhouse MJ, Thornton AR, Johnson CG, Kokelaar BP, Gray JMNT (2012) Segregation-induced fingering instabilities in granular free-surface flows. J Fluid Mech 709(1):543–580. https://doi.org/10.1017/jfm.2012.348

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang Q, Cai F, Ugai K, Yamada M, Su Z, Ahmed A, Huang R, Xu Q (2011) Some factors affecting mass-front velocity of rapid dry granular flows in a large flume. Eng Geol 122(3):249–260. https://doi.org/10.1016/j.enggeo.2011.06.006

    Article  Google Scholar 

  64. Yang Q, Su Z, Cai F, Ugai K (2015) Enhanced mobility of polydisperse granular flows in a small flume. Geoenvironmental Disasters 2(1):2197–8670. https://doi.org/10.1186/s40677-015-0019-4

    Article  Google Scholar 

  65. Zhou GGD, Sun QC (2017) Study of pore fluid effect on the mobility of granular debris flows. Powders and Grains 2017 – 8th International conference on micromechanics on granular media, 140:09046. https://doi.org/10.1051/epjconf/201714009046

  66. Zhou JW, Cui P, Hao MH (2016) Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet. China Landslides 13(1):39–54. https://doi.org/10.1007/s10346-014-0553-2

    Article  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the financial support from the National Natural Science Foundation of China under Grant Nos. 42177155, 41790442, 41702298, and 41602359 as well as the fellowship of China Postdoctoral Science Foundation Nos. 2020M683676XB. We thank Professor Alice Crossland, Professor Ke Gao, and the Team of Native English Editing (https: www.nativeee.com) for an English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: ZD and Y-BW, Funding acquisition: ZD, Conducting experiments and analysis: ZD, Y-BW, J-BP, and S-ZX; Writing: ZD and Y-BW.

Corresponding author

Correspondence to Yan-Bin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Wu, YB., Peng, JB. et al. Characteristics of sand avalanche motion and deposition influenced by proportion of fine particles. Acta Geotech. 18, 1353–1372 (2023). https://doi.org/10.1007/s11440-022-01653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01653-y

Keywords

Navigation