Skip to main content
Log in

Fingering phenomena during grain–grain displacement

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman–Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an “effective viscosity” for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman–Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Allen P, Tildesley D (1987) Computer simulation of liquids. Oxford University Press, Clarendon

    MATH  Google Scholar 

  2. Alonso-Marroquín F, Herrmann HJ (2004) Ratcheting of granular materials. Phys Rev Lett 92:054,301

    Article  Google Scholar 

  3. Amaral LAN, Barabási AL, Stanley HE (1994) Universality classes for interface growth with quenched disorder. Phys Rev Lett 73:62–65

    Article  Google Scholar 

  4. Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Aranson I, Tsimring L (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78(2):641–692

    Article  Google Scholar 

  6. Atman APF, Brunet P, Geng J, Reydellet G, Claudin P, Behringer RP, Clément E (2005) From the stress response function (back) to the sand pile “dip”. Eur. Phys. J. E 17:93–100

    Article  Google Scholar 

  7. Atman APF, Brunet P, Geng J, Reydellet G, Combe G, Claudin P, Behringer RP, Clément E (2005) Sensitivity of the stress response function to packing preparation. J Phys 17(24):S2391

    Google Scholar 

  8. Atman APF, Claudin P, Combe G (2009) Departure from elasticity in granular layers: investigation of a crossover overload force. Comput Phys Commun 180(4):612–615

    Article  Google Scholar 

  9. Atman APF, Claudin P, Combe G, Mari R (2013) Mechanical response of an inclined frictional granular layer approaching unjamming. EPL (Europhys Lett) 101(4):44,006

    Article  Google Scholar 

  10. Atman APF, Claudin P, Combe G, Martins G (2014) Mechanical properties of inclined frictional granular layers. Granular Matter 16(2):193–201

    Article  Google Scholar 

  11. Atman APF, Combe G, Ferreira TR, Barros JA (2013) Pattern formation during capillary rising of a fluid front into a granular media. In: POWDERS AND GRAINS 2013: Proceedings of the 7th international conference on micromechanics of granular media, AIP Conference Proceedings, vol. 1542, pp 1075–1078

  12. Atman APF, Kolb E, Combe G, Paiva HA, Martins GHB (2013) Non-gaussian behavior in jamming/unjamming transition in dense granular materials. In: POWDERS AND GRAINS 2013: proceedings of the 7th international conference on micromechanics of granular media, AIP Conference Proceedings, vol. 1542, pp 381–384

  13. Bak P (2013) How nature works: the science of self-organized criticality. Springer, New York

    MATH  Google Scholar 

  14. Barabási AL, Stanley H (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Caballero G, Kolb E, Lindner A, Cviklinski J, Lanuza J, Clément E (2005) Experimental investigation of granular dynamics close to the jamming transition. J Phys 17:S2503

    Google Scholar 

  16. Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844

    Article  Google Scholar 

  17. Cheng X, Xu L, Patterson A, Jaeger Jaeger HMNSR (2008) Towards the zero-surface-tension limit in granular fingering instability. Nat Phys 4:234–237

    Article  Google Scholar 

  18. Chevalier C, Ben Amar M, Bonn D, Lindner A (2006) Inertial effects on saffmantaylor viscous fingering. J Fluid Mech 552:83–97

    Article  MATH  Google Scholar 

  19. Combe G, Richefeu V, Stasiak M, Atman APF (2015) Experimental validation of a nonextensive scaling law in confined granular media. Phys Rev Lett 115:238,301

    Article  Google Scholar 

  20. Combe G, Richefeu V, Viggiani G, Hall SA, Tengattini A, Atman APF (2013) Experimental evidence of “granulence”. In: Yu A, Dong K, Yang R, Luding S (eds.) POWDERS AND GRAINS 2013: proceedings of the 7th international conference on micromechanics of granular media, AIP Conference Proceedings, vol. 1542, pp 453–456

  21. Cundall PA, Strack DLO (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  22. Duran J, Reisinger A, de Gennes P (1999) Sands, powders, and grains: an introduction to the physics of granular materials. partially ordered systems. Springer, New York

    Google Scholar 

  23. Goldenberg C, Atman APF, Claudin P, Combe G, Goldhirsch I (2006) Scale separation in granular packings: stress plateaus and fluctuations. Phys Rev Lett 96(16):168001

    Article  Google Scholar 

  24. Goldenberg C, Goldhirsch I (2002) Force chains, microelasticity, and macroelasticity. Phys Rev Lett 89(8):084,302

    Article  Google Scholar 

  25. Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435(7039):188–191

    Article  Google Scholar 

  26. Goldhirsch I, Goldenberg C (2002) On the microscopic foundations of elasticity. Eur Phys J l E 9:245–251

    Article  Google Scholar 

  27. Gutiérrez G, Colonnello C, Boltenhagen P, Darias JR, Peralta-Fabi R, Brau F, Clément E (2015) Silo collapse under granular discharge. Phys Rev Lett 114:018,001

    Article  Google Scholar 

  28. Gutiérrez G, Pozo O, Reyes LI, V RP, Drake JF, Ott E (2004) Simple model for reverse buoyancy in a vibrated granular system. EPL (Europhys Lett) 67(3):369

    Article  Google Scholar 

  29. Hales TC (2001) The honeycomb conjecture. Discrete Comput Geom 25(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  30. Herrmann H, Hovi J, Luding S (2013) Physics of dry granular media. Nato Science Series E. Springer, Dordrecht

    Google Scholar 

  31. Hinrichsen H, Wolf D (2004) The physics of granular media. Wiley, Berlin

    Book  Google Scholar 

  32. Jaeger HM, Nagel SR (1992) Physics of the granular state. Science 255:1523–1531

    Article  Google Scholar 

  33. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    Article  Google Scholar 

  34. Johnsen O, Toussaint R, Måløy KJ, Flekkøy EG (2006) Pattern formation during air injection into granular materials confined in a circular hele-shaw cell. Phys Rev E 74:011,301

    Article  Google Scholar 

  35. Kolb E, Cviklinski J, Lanuza J, Claudin P, Clément E (2004) Reorganization of a dense granular assembly: the unjamming response function. Phys Rev E 69:031,306

    Article  Google Scholar 

  36. Lindner A, Coussot P, Bonn D (2000) Viscous fingering in a yield stress fluid. Phys Rev Lett 85:314–317

    Article  Google Scholar 

  37. Lindner A, Derks D, Shelley MJ (2005) Stretch flow of thin layers of newtonian liquids: fingering patterns and lifting forces. Phys Fluids 17(7):072107

    Article  MathSciNet  MATH  Google Scholar 

  38. Magalhães CFM, Moreira JG, Atman APF (2010) Catastrophic regime in the discharge of a granular pile. Phys Rev E 82:051,303

    Article  Google Scholar 

  39. Magalhaes CFM, Atman APF, Combe G, Moreira JG (2014) Jamming transition in a two-dimensional open granular pile with rolling resistance. Pap Phys 6:0–0

  40. Makse H, Havlin S, King P, Stanley H (1997) Spontaneous stratification in granular mixtures. Nature 386(6623):379–382

    Article  Google Scholar 

  41. Makse HA (1997) Stratification instability in granular flows. Phys Rev E 56:7008–7016

    Article  Google Scholar 

  42. Mehta A (2007) Granular physics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  43. Pinto SF, Couto MS, Atman APF, Alves SG, Bernardes AT, de Resende HFV, Souza EC (2007) Granular fingers on jammed systems: New fluidlike patterns arising in grain–grain invasion experiments. Phys Rev Lett 99(6):068001

    Article  Google Scholar 

  44. Pöschel T, Herrmann HJ (1995) Size segregation and convection. EPL (Europhys Lett) 29(2):123

    Article  Google Scholar 

  45. Pöschel T, Luding S (2001) Granular gases. Lecture notes in physics. Springer, Berlin

    Book  Google Scholar 

  46. Radjai F, Roux S (2002) Turbulentlike fluctuations in quasistatic flow of granular media. Phys Rev Lett 89:064,302

    Article  Google Scholar 

  47. Ramos O, Altshuler E, Måløy KJ (2009) Avalanche prediction in a self-organized pile of beads. Phys Rev Lett 102:078,701

    Article  Google Scholar 

  48. Richefeu V, Combe G, Viggiani C (2012) An experimental assessment if displacements fluctuations in a 2d granular material subject to shear. Géotechnique Lett 2:113–118

    Article  Google Scholar 

  49. Ristow G (2000) Pattern formation in granular materials. Springer, Berlin

    Google Scholar 

  50. Rosato A, Strandburg KJ, Prinz F, Swendsen RH (1987) Why the brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett 58:1038–1040

    Article  MathSciNet  Google Scholar 

  51. Saffman PG, Taylor G (1958) The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid. Proc R Soc Lond A 245(1242):312–329

    Article  MathSciNet  MATH  Google Scholar 

  52. Sahini M, Sahimi M (1994) Applications of percolation theory. Taylor & Francis, London

    Google Scholar 

  53. Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453:629–632

    Article  Google Scholar 

  54. Thompson D (1942) On growth and form. No. v. 1 in Dover books on biology series. Dover, New York

  55. Umbanhowar PB, Melo F, Swinney HL (1996) Localized excitations in a vertically vibrated granular layer. Nature 382:793–796

    Article  Google Scholar 

  56. Vicsek T (1992) Fractal growth phenomena. World Scientific, Singapore

    Book  MATH  Google Scholar 

  57. Zuriguel I, Garcimartín A, Maza D, Pugnaloni LA, Pastor JM (2005) Jamming during the discharge of granular matter from a silo. Phys Rev E 71(051):303

    Google Scholar 

  58. Zuriguel I, Janda A, Garcimartín A, Lozano C, Arévalo R, Maza D (2011) Silo clogging reduction by the presence of an obstacle. Phys Rev Lett 107:278,001

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to E. Clèment and P. Claudin for fruitful discussions. APFA thanks FAPEMIG and CNPq funding brazilian agencies. NMPM thanks CAPES for funding and CEFET-MG and 3S-R Laboratory for the kind support for academic interchange. We thank the anonymous referees for the very detailed and constructive reports of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. F. Atman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (gif 740 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, N.M.P., Paiva, H.A., Combe, G. et al. Fingering phenomena during grain–grain displacement. Comp. Part. Mech. 4, 153–164 (2017). https://doi.org/10.1007/s40571-016-0113-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0113-8

Keywords

Navigation