Skip to main content
Log in

Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

An erodible substrate and a sharp slope break affect the dynamics and deposition of long runout landslides. We study the flow evolution of a granular mass (1.5–5.1 l of sand or gravel) released on a bilinear chute, i.e., an incline (between 35 and 66°) followed by a horizontal sector, either sand-free or covered (1–2-cm-thick sand layer). Monitoring the time evolution of the falling mass profiled at 120 Hz, the impact dynamics, erosion of the basal layer, and modes of deposition are studied. The frontal deposition is followed by a backward propagating shock wave at low slope angles (<45°), or by a forward prograding flow at greater angles. Experiments with colored sand layers show a complex sequence of dilation, folding and thrusting within both the collapsing sand flow and the substrate. Experimental results are compared with real rock avalanche data and nearly vertical collapses. The observed increase of the drop height divided by the runout (H/L or Heim’s ratio) with both chute slope angle and thickness of the erodible substrate is explained as an effect of vertical momentum loss at the slope break. Data suggest a complex evolution, different from that of a thin flow basal shear flow. To provide an approximate explanation of the dynamics, three analytical models are proposed. Erosion of a 1-cm-thick substrate is equivalent to 8–12 % increase of the apparent friction coefficient. We simulate the deposition and emplacement over an erodible layer with a FEM arbitrary Lagrangian Eulerian code, and find a remarkable similarity with the time evolution observed in the experiments. 2D models evidence the internal deformation with time; 3D models simulate deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • ASTM D3080 / D3080M-11 (2011) Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, 2011, www.astm.org

  • ASTM D7263-09 (2009) Standard test methods for laboratory determination of density (unit weight) of soil specimens, ASTM International, West Conshohocken, PA, 2009, www.astm.org

  • Bowman ET, Take WA, Rait KL, Hann C (2012) Physical models of rock avalanche spreading behaviour with dynamic fragmentation. Can Geotech J 49:460–476

    Article  Google Scholar 

  • Breien H, De Blasio FV, Elverhøi A, Hoeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood. Landslides. doi:10.1007/s10346-008-0118-3

    Google Scholar 

  • Calvetti F, Crosta G, Tatarella M (2000) Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Rivista Italiana di Geotecnica 34(2):21–38

    Google Scholar 

  • Chen H, Crosta GB, Lee CF (2006) Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique 56(5):305–322

    Article  Google Scholar 

  • Choffat P (1929) L’ecroulement d’Arvel (Villeneuve) de 1922. Bull Soc Vaudoise Sci Nat 57(1):5–28

    Google Scholar 

  • Corner GD (1980) Avalanche impact landforms in Troms, North Norway. Geogr Ann 62A:1–10

    Article  Google Scholar 

  • Crosta G (1992) An example of unusual complex landslide: from a rockfall to a dry granula flow? 2° Conv. Giovani Ricercatori di Geologia Applicata, 27–31 October 1992, Viterbo, Geologica Romana, Roma, vol 30, 175–184

  • Crosta GB, Imposimato S, Roddeman D, Chiesa S, Moia F (2005) Small fast moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng Geol 79(3–4):185–214. doi:10.1016/j.enggeo.2005.01.014

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns R (eds) Landslides from massive rock slope failure. NATO science series. Earth Environ Sci, vol 49. Springer, Dordrecht, pp 211–232

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche. Italian Alps J Geophys Res 112:F01006. doi:10.1029/2005JF000455

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2008) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109(1–2):135–145

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modeling of 2-D granular step collapse on erodible and non erodible surface. J Geophys Res 114:F03020

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2013a) Interaction of landslide mass and water resulting in impulse waves. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 5: Complex Environment. Springer, Berlin Heidelberg, pp 49–56. doi:10.1007/978-3-642-31427-8

  • Crosta GB, Imposimato S, Roddeman D, Frattini P (2013b) On controls of flow-like landslide evolution by an erodible layer. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 3: Spatial Analysis and Modelling. Springer, Berlin Heidelberg, pp 263–270. doi:10.1007/978-3-642-31427-8

  • Crosta GB, Imposimato S, Roddeman D (2015a) Granular flows on erodible and non erodible inclines. Granul Matter. doi:10.1007/s10035-015-0587-8

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman D (2015b) Landslide spreading, impulse water waves and modelling of the Vajont Rockslide. Rock Mech Rock Eng 1–24. doi:10.1007/s00603-015-0769-z

  • Cruden DM, Hungr O (1986) The debris of Frank slide and theories of rockslide-avalanche mobility. Can J Earth Sci 23:425–432

    Article  Google Scholar 

  • De Blasio FV (2011a) Landslides in Valles Marineris (Mars): a possible role of basal lubrication by sub-surface ice. Planet Space Sci 59:1384–1392. doi:10.1016/j.pss.2011.04.015

    Article  Google Scholar 

  • De Blasio FV (2011b) Introduction to the physics of landslides. Springer Verlag, Berlin (420 pp)

    Book  Google Scholar 

  • De Blasio FV, Crosta GB (2014) Simple physical model for the fragmentation of rock avalanches. Acta Mech. doi:10.1007/s00707-013-0942-y

    Google Scholar 

  • De Blasio FV, Breien H, Elverhøi E (2011) Modelling a cohesive-frictional debris flow: an experimental, theoretical, and field-based study. Earth Surf Process Landf 36:753–766

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Res 106(B1):553–566. doi:10.1029/2000JB900330

    Article  Google Scholar 

  • Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Process Landf 37:1527–1541

    Article  Google Scholar 

  • Duperret A, Genter A, Martinez A, Mortimore RN (2006) Coastal chalk cliff instability in NW France: role of lithology, fracture pattern and rainfall. In: Mortimore RN, Duperret A (eds) Coastal chalk cliff instability, vol 20. Geological Society, London, Engineering Geology Special Publications, The Geological Society of London, London, pp 33–55

    Google Scholar 

  • Erismann TH, Abele G (2001) Dynamics of rockslides and rockfalls. Springer, Berlin, 316 pp

    Book  Google Scholar 

  • Farin M, Mangeney A, Roche O (2014) Fundamental changes of granular flow dynamics, deposition and erosion processes at high slope angles: insights fromlaboratory experiments. J Geophys Res Earth Surf 119:504–532. doi:10.1002/2013JF002750

    Article  Google Scholar 

  • Fitzharris BB, Owens IF (1984) Avalanche tarns. J Glaciol 30(106):308–312

    Google Scholar 

  • Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24

    Article  Google Scholar 

  • Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond A 455:1841–1874. doi:10.1098/rspa.1999.0383

  • Hakonardottir KM, Hogg AJ, Johannesson T, Kern M, Tiefenbacher F (2003a) Large scale avalanche braking mound and catching dam experiments with snow. A study of the airborne jet. Surv Geophys 24:543–554

    Article  Google Scholar 

  • Hakonardottir KM, Hogg AJ, Johannesson T, Tomasson GG (2003b) A laboratory study of the retarding effects of braking mounds on snow avalanches. J Glaucma 49(165):191–200

    Article  Google Scholar 

  • Heim A (1882) Der Bergsturz von Elm. DeutschGeol Gesell Zeitschr 34:74–115

    Google Scholar 

  • Heim A (1932) Bergsturz und Menchenleben. Fretz und Wasmuth, Zürich, 218 pp

  • Hewitt K et al (2006) Rock avalanches with complex run out and emplacement, Karakoram Himalaya, Inner Asia. In: Evans SG (ed) Landslides from Massive Rock Slope Failure. Springer, Printed in the Netherlands, pp 521–550

    Chapter  Google Scholar 

  • Hsu K (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Hutchinson JN (2002) Chalk flows from the coastal cliffs of northwest Europe. Geol Soc Am Rev Eng Geol 2002(15):257–302

    Article  Google Scholar 

  • Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res 117:F03006. doi:10.1029/2011JF002189

  • Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53:27–58. doi:10.1002/2013RG000447

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JG (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121. doi:10.1038/NGEO1040

    Article  Google Scholar 

  • Jaboyedoff M (2003) The rockslide of Arvel caused by human activity (Villeneuve, Switzerland): summary, partial reinterpretation and comments of the work of Ph. Choffat (1929): L’ecroulement d’Arvel (Villeneuve) de 1922. Bull. SVSN 57, 5 – 28, Open File Rep. 3, Int. Indep. Cent. of Clim. Change Impact on Nat. Risk Anal. in Mt. Areas, Lausanne, Switzerland. http://www.quanterra.org/erosion_hazard.htm last accessed 28 March 201

  • Lacaze L, Phillips JC, Kerswell RR (2008) Planar collapse of a granular column: experiments and discrete element simulations. Phys Fluids 20:063302.1–063302.12. doi:10.1063/1.2929375

    Article  Google Scholar 

  • Lajeunesse E, Mangeney-Castelnau A, Vilotte JP (2004) Spreading of a granular mass on a horizontal plane. Phys Fluids 16:2371–2381. doi:10.1063/1.1736611

    Article  Google Scholar 

  • Lajeunesse E, Monnier JB, Homsy GM (2005) Granular slumping on a horizontal surface. Phys Fluids 17:103302.1–103302.15. doi:10.1063/1.2087687

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Lied K, Bakkehøi S (1980) Empirical calculations of snow-avalanche run-out distance based on topographic parameters. J Glaucoma 26:165–177

    Google Scholar 

  • Lube G, Huppert H, Sparks S, Freundt A (2005) Collapses of two dimensional granular columns. Phys Rev E 72:041301.1–041301.10. doi:10.1103/PhysRevE.72.041301

    Article  Google Scholar 

  • Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5:3417, DOI: 10.1038

    Google Scholar 

  • Lucchitta BK (1979) Landslides in Valles Marineris, Mars. J Geophys Res 84(B14):8097–8113. doi:10.1029/JB084iB14p08097

    Article  Google Scholar 

  • Ma A, Liao H, Ning C, Feng Z (2014) Stability analysis of a high slope along a loess plateau based on field investigation and numerical analysis. In: Sassa K et al (eds) Landslide science for a safer geoenvironment, vol 1. Springer, Berlin Heidelberg, pp 451–458

  • Mangeney A, Tsimring LS, Volfson D, Aranson IS, Bouchut B (2007) Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys Res Lett 34:L22401

    Article  Google Scholar 

  • Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res 115:F03040. doi:10.1029/2009JF001462

  • Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of not constrained gravel flows. Rock Mech Rock Eng 41(1):133–151

    Article  Google Scholar 

  • Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10:23–36. doi:10.1007/s10346-011-0313-5

    Article  Google Scholar 

  • McClung DM (2001) Extreme avalanche runout: a comparison of empirical models. Can Geotech J 38:1254–1265. doi:10.1139/cgj-38-6-1254

    Article  Google Scholar 

  • McConnell RG, Brock RW (1904) Report on great landslide at Frank, Alberta, Canada. Can. Dept. Inter. Annual Rep., 1902—1903, Part 8, 17 pp

  • McSaveney MJ, Davies T (2007) Rockslides and their motion. In: Sassa K, Fukuoka F, Wang F, Wang G (eds) Progress in landslide science. Springer, Berlin, pp 113–133

    Chapter  Google Scholar 

  • McSaveney MJ, Davies TRH, Hodgson KA (2000) A contrast in deposit style and process between large and small rock avalanches. In: Bromhead E, Dixon D, Ibsen M–L, Bromhead E, Dixon D, Ibsen M–L (eds) Landslides in research, theory and practice. Thomas Telford Publishing, London, pp 1053–1058

    Google Scholar 

  • Okura Y, Kitahara H, Sammori T, Kawanami A (2000) The effects of rockfall volume on runout distance. Eng Geol 58(2):109–124

    Article  Google Scholar 

  • Okura Y, Kitahara H, Kawanami A, Kurokawa U (2003) Topography and volume effects on travel distance of surface failure. Eng Geol 67:243–254

    Article  Google Scholar 

  • Owen G, Matthews JA, Shakesby RA, He X (2006) Snow-avalanche impact landforms, deposits and effects at Urdvatnet, Southern Norway: implications for avalanche style and process. Geografiska Annaler: Ser A Phys Geogr 88:295–307. doi:10.1111/j.0435-3676.2006.00302.x

    Article  Google Scholar 

  • Pastor M, Blanc T, Pastor MJ (2009) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Non-Newtonian Fluid Mech 158:142–153

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Petrone S, Morles MS, Drempetic V, Issler D, Crosta GB, Cascini L, Sorbino G, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11(5):793–812. doi:10.1007/s10346-014-0484-y

  • Pudasaini SP, Hutter K (2006) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin Heidelberg, 602 pp

  • Pudasaini S, Kroner C (2008) Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results. Phys Rev E 78:041308

    Article  Google Scholar 

  • Roddeman DG (2008) TOCHNOG user’s manual. FEAT, 255 pp, www.feat.nl/manuals/user/user.html

  • Rowley PJ, Kokelaar P, Menzies M, Waltham D (2011) Shear-derived mixing in dense granular flows. J Sediment Res 81:874–884. doi:10.2110/jsr.2011.72

  • Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289–366

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Smith DJ, McCarthy DP, Luckman BH (1994) Snow-avalanche impact pools in the Canadian Rocky Mountains. Arct Alp Res 26(2):116–127

    Article  Google Scholar 

  • Staron L (2008) Mobility of long-runout rock flows: a discrete numerical investigation. Geophys J Int 172(1):455–463

    Article  Google Scholar 

  • Stock GM, Uhrhammer RA (2010) Catastrophic rock avalanche 3600 years BP from El Capitan, Yosemite Valley. Calif Earth Surf Process Landf 35:941–951. doi:10.1002/esp.1982

    Article  Google Scholar 

  • Strom A (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia Mugnozza G, Strom A, Hermanns R (eds) Landslides from massive rock slope failure. NATO Science Series. Earth Environ Sci, vol 49. Springer, Dordrecht, pp 305–326

  • Taboada A, Estrada N (2009) Rock-and-soil avalanches: theory and simulation. J Geophys Res 114:F03004. doi:10.1029/2008JF001072

  • Utili S, Zhao T, Houlsby GT (2015) 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng Geol 186:3–16

    Article  Google Scholar 

  • von Poschinger A, Kippel T (2009) Alluvial deposits liquefied by the Flims rock slide. Eng Geol 103(1):50–56

    Google Scholar 

  • Wieczorek GF, Morrissey MM, Iovine G, Godt J (1999) Rock-fall potential in the Yosemite Valley, California: U.S. Geological Survey Open File Report 99–578, 1 plate, scale 1:12 000, 7. http://greenwood.cr.usgs.gov/pub/open-file-reports/ofr-99-0578/ last accessed 28 March 2016

  • Zhao T, Utili S, Crosta GB (2015) Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock Mech Rock Eng 1–20. doi:10.1007/s00603-015-0731-0

Download references

Acknowledgments

The data for this paper are available upon request from the authors. The research was supported by PRIN Project: time-space prediction of high impact landslides under changing precipitation regimes PRIN 2010–2011—prot. 2010E89BPY_007 project by the Italian Ministry of Research and University. Jeff Warburton is thanked for the critical reviewing of an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Crosta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 30 kb)

ESM 2

(JPG 597 kb)

ESM 3

(JPG 409 kb)

ESM 4

(JPG 663 kb)

ESM 5

(JPG 469 kb)

ESM 6

(JPG 917 kb)

Appendix

Appendix

Table 3 List of the mathematical symbols used in this work and their meaning

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosta, G.B., De Blasio, F.V., De Caro, M. et al. Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study. Landslides 14, 47–68 (2017). https://doi.org/10.1007/s10346-016-0697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0697-3

Keywords

Navigation