Skip to main content
Log in

Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries

纳米结构过渡金属氧化物作为锂离子电池负极材料

  • Review
  • Chemistry
  • Published:
Science Bulletin

Abstract

The exploration for post-carbon electrode materials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, and longer cycle life. Transition metal oxides have recently received a great deal of attention as very promising anode materials due to their high theoretical capacity, good safety, eco-benignity, and huge abundance. The present work reviews the latest advances in developing novel transition metal oxides, including Fe2O3, Fe3O4, Co3O4, CoO, NiO, MnO, Mn2O3, Mn3O4, MnO2, MoO3, Cr2O3, Nb2O5, and some binary oxides such as NiCo2O4, ZnCo2O4, MnCo2O4 and CoMn2O4. Nanostructuring and hybrid strategies applicable to transition metal oxides are summarized and analyzed. Furthermore, the impacts of binder choice and heat treatment on electrochemical performance are discussed.

摘要

为了满足锂离子电池的更高能量/功率密度、更长循环寿命、更好安全性能的发展需求,对于碳负极以外的新型负极材料的探索越来越重要。其中,过渡金属氧化物由于具有较高的理论比容量、较好的安全性能、储量丰富和对环境友好等优点而有望成为新一代高能量锂离子电池负极材料。本综述探讨了包括Fe2O3,Fe3O4,Co3O4,CoO,NiO,MnO,Mn2O3,Mn3O4,MnO2,MoO3,Cr2O3和Nb2O5在内的过渡金属氧化物及一些二元氧化物,如NiCo2O4,ZnCo2O4,MnCo2O4和CoMn2O4的最新研究进展。对改善过渡金属氧化物电化学性能的纳米化及合成复合材料的方法进行了总结和分析。同时,关于黏结剂的选择及热处理手段对电化学性能的影响也进行了讨论及研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Recham N, Chotard JN, Dupont L et al (2010) A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat Mater 9:68–74

    Article  Google Scholar 

  2. Park KS, Benayad A, Kang DJ et al (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130:14930–14931

    Article  Google Scholar 

  3. Amine K, Belharouak I, Chen ZH et al (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057

    Article  Google Scholar 

  4. Chen JS, Tan YL, Li CM et al (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100 % exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130

    Article  Google Scholar 

  5. Liu J, Cao GZ, Yang ZG et al (2008) Oriented nanostructures for energy conversion and storage. ChemSusChem 1:676–697

    Article  Google Scholar 

  6. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  7. Chen J, Xu LN, Li WY et al (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17:582–586

    Article  Google Scholar 

  8. Wang ZY, Wang ZC, Madhavi S et al (2012) α-Fe2O3-mediated growth and carbon nanocoating of ultrafine SnO2 nanorods as anode materials for Li-ion batteries. J Mater Chem 22:2526–2531

    Article  Google Scholar 

  9. Larcher D, Masquelier C, Bonnin D et al (2003) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150:A133–A139

    Article  Google Scholar 

  10. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  11. Li J, Christensen L, Obrovac MN et al (2008) Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J Electrochem Soc 155:A234–A238

    Article  Google Scholar 

  12. Wang ZY, Madhavi S, Lou XW (2012) Ultralong α-MoO3 nanobelts: synthesis and effect of binder choice on their lithium storage properties. J Phys Chem C 116:12508–12513

    Article  Google Scholar 

  13. Zhang JJ, Huang T, Yu AS (2015) Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles. J Power Sources 273:894–903

    Article  Google Scholar 

  14. Timmons A, Dahn JR (2006) In situ optical observations of particle motionin alloy negative electrodes for Li-ion batteries. J Electrochem Soc 153:A1206–A1210

    Article  Google Scholar 

  15. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  Google Scholar 

  16. Cheng FY, Tao ZL, Liang J et al (2008) Template-directed materials for rechargeable lithium-ion batteries. Chem Mater 20:667–681

    Article  Google Scholar 

  17. Cheng FY, Liang J, Tao ZL et al (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  Google Scholar 

  18. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  Google Scholar 

  19. Ji LW, Lin Z, Alcoutlabi M et al (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  20. Jiang J, Li YY, Liu JP et al (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  Google Scholar 

  21. Li H, Wang ZX, Chen LQ et al (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  22. Liu C, Li F, Ma LP et al (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  Google Scholar 

  23. Liu HK, Wang GX, Guo ZP et al (2006) Nanomaterials for lithium-ion rechargeable batteries. J Nanosci Nanotechnol 6:1–15

    Article  Google Scholar 

  24. Zhang JJ, Sun YF, Yao Y et al (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65

    Article  Google Scholar 

  25. Zhang JJ, Huang T, Liu ZL et al (2013) Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. Electrochem Commun 29:17–20

    Article  Google Scholar 

  26. Xu YH, Jian GQ, Liu YH et al (2014) Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy 3:26–35

    Article  Google Scholar 

  27. Xu X, Cao R, Jeong S et al (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991

    Article  Google Scholar 

  28. Huang H, Zhu WJ, Tao XY et al (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces 4:5974–5980

    Article  Google Scholar 

  29. Ge DH, Geng HB, Wang JQ et al (2014) Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 6:9689–9694

    Article  Google Scholar 

  30. Zhu LP, Wen Z, Mei WM et al (2013) Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties. J Phys Chem C 117:20465–20473

    Article  Google Scholar 

  31. Bai ZC, Ju ZC, Guo CL et al (2014) Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries. Nanoscale 6:3268–3273

    Article  Google Scholar 

  32. Wang NN, Chen L, Ma XJ et al (2014) Facile synthesis of hierarchically porous NiO microtubes as advanced anode materials for lithium-ion batteries. J Mater Chem A 2:16847–16850

    Article  Google Scholar 

  33. Zhang YJ, Yan Y, Wang XY et al (2014) Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries. Chem Eur J 20:6126–6130

    Article  Google Scholar 

  34. Liu H, Du XW, Xing XR et al (2012) Highly ordered mesoporous Cr2O3 materials with enhanced performance for gas sensors and lithium ion batteries. Chem Commun 48:865–867

    Article  Google Scholar 

  35. Guo SQ, Zhang X, Zhou Z et al (2014) Facile preparation of hierarchical Nb2O5 microspheres with photocatalytic activities and electrochemical properties. J Mater Chem A 2:9236–9243

    Article  Google Scholar 

  36. Keng PY, Kim BY, Shim IB et al (2009) Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano 3:3143–3157

    Article  Google Scholar 

  37. Zhou JS, Song HH, Chen XH et al (2009) Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: a general synthesis strategy and its application to lithium-ion batteries. Chem Mater 21:2935–2940

    Article  Google Scholar 

  38. Zhang JJ, Yao Y, Huang T et al (2012) Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries. Electrochim Acta 78:502–507

    Article  Google Scholar 

  39. Zhang JJ, Chen YL, Sun YF et al (2013) Hierarchical hollow Fe2O3 micro-flowers composed of porous nanosheets as high performance anodes for lithium-ion batteries. RSC Adv 3:20639–20646

    Article  Google Scholar 

  40. Han Y, Wang YJ, Li L et al (2011) Preparation and electrochemical performance of flower-like hematite for lithium-ion batteries. Electrochim Acta 56:3175–3181

    Article  Google Scholar 

  41. NuLi YN, Zhang P, Guo ZP et al (2008) Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries. Electrochim Acta 53:4213–4218

    Article  Google Scholar 

  42. Zeng SY, Tang KB, Li TW et al (2008) Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J Phys Chem C 112:4836–4843

    Article  Google Scholar 

  43. Kim HJ, Choi K, Pan AQ et al (2011) Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J Mater Chem 21:6549–6555

    Article  Google Scholar 

  44. Wu ZC, Yu KA, Zhang SD et al (2008) Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C 112:11307–11313

    Article  Google Scholar 

  45. Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637

    Article  Google Scholar 

  46. Ma J, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187–3189

    Article  Google Scholar 

  47. Yue J, Gu X, Chen L et al (2014) General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. J Mater Chem A 2:17421–17426

    Article  Google Scholar 

  48. Choi SH, Kang YC (2014) Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Appl Mater Interfaces 6:2312–2316

    Article  Google Scholar 

  49. Liu J, Qiao SZ, Chen JS et al (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–12591

    Article  Google Scholar 

  50. Liu R, Yang SC, Wang F et al (2012) Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications. ACS Appl Mater Interfaces 4:1537–1542

    Article  Google Scholar 

  51. Zhang GQ, Yu L, Wu HB et al (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613

    Article  Google Scholar 

  52. Lei C, Han F, Sun Q et al (2014) Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries. Chem Eur J 20:139–145

    Article  Google Scholar 

  53. Gao GX, Yu L, Wu HB et al (2013) Hierarchical tubular structures constructed by carbon-coated α-Fe2O3 nanorods for highly reversible lithium storage. Small 9:1741–1745

    Google Scholar 

  54. Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem 21:6636–6641

    Article  Google Scholar 

  55. Wang L, Yu Y, Chen PC et al (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183:717–723

    Article  Google Scholar 

  56. He CN, Wu S, Zhao NQ et al (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469

    Article  Google Scholar 

  57. Choi SH, Ko YN, Jung KY et al (2014) Macroporous Fe3O4/carbon composite microspheres with a short Li+ diffusion pathway for the fast charge/discharge of lithium ion batteries. Chem Eur J 20:11078–11083

    Article  Google Scholar 

  58. Wu CY, Li XP, Li WS et al (2014) Fe2O3 nanorods/carbon nanofibers composite: preparation and performance as anode of high rate lithium ion battery. J Power Sources 251:85–91

    Article  Google Scholar 

  59. Park SK, Jin A, Yu SH et al (2014) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459

    Article  Google Scholar 

  60. Zhang S, Zhu LX, Song HH et al (2014) Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries. Nano Energy 10:172–180

    Article  Google Scholar 

  61. Kan J, Wang Y (2013) Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Sci Rep 3:3502

    Google Scholar 

  62. Sun HT, Sun X, Hu T et al (2014) Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J Phys Chem C 118:2263–2272

    Article  Google Scholar 

  63. Guan X, Nai JW, Zhang YP et al (2014) CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem Mater 26:5958–5964

    Article  Google Scholar 

  64. Inagaki M (2012) Carbon coating for enhancing the functionalities of materials. Carbon 50:3247–3266

    Article  Google Scholar 

  65. Zhang JJ, Huang T, Yu AS (2014) Synergistic effect of amorphous carbon coverage and enlarged voltage window on the superior lithium storage performance of nanostructured mesoporous anatase TiO2: emphasis on interfacial storage phenomena. J Alloys Compd 606:61–67

    Article  Google Scholar 

  66. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in grapheme. Nature 438:197–200

    Article  Google Scholar 

  67. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861

    Article  Google Scholar 

  68. Yang SB, Feng XL, Wang L et al (2010) Graphene-based nanosheets with a sandwich structure. Angew Chem Int Ed 122:4795–4799

    Article  Google Scholar 

  69. Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  70. Li D, Shi DQ, Liu ZW et al (2013) TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. J Nanopart Res 15:1674

    Article  Google Scholar 

  71. Kovalenko I, Zdyrko B, Magasinski A et al (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    Article  Google Scholar 

  72. Lestriez B, Bahri S, Sandu I et al (2007) On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem Commun 9:2801–2806

    Article  Google Scholar 

  73. Wei T, Chen C, Chien H et al (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347–351

    Article  Google Scholar 

  74. NuLi YN, Zhang P, Guo Z et al (2008) NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochem Solid State Lett 11:A64–A67

    Article  Google Scholar 

  75. Shen LF, Che Q, Li HS et al (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637

    Article  Google Scholar 

  76. Qu BH, Hu LL, Li QH et al (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736

    Article  Google Scholar 

  77. Li JF, Xiong SL, Li XW et al (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB934103), the National Natural Science Foundation of China (21173054), and Science & Technology Commission of Shanghai Municipality (08DZ2270500).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishui Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3770 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yu, A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 60, 823–838 (2015). https://doi.org/10.1007/s11434-015-0771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0771-6

Keywords

关键词

Navigation