Skip to main content
Log in

Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Nonadiabatic holonomic quantum transformations (NHQTs) have attracted wide attention and have been applied in many aspects of quantum computation, whereas related research is usually limited to the field of quantum physics. Here we bring NHQTs into constructing a unidirectional acoustic metamaterial (UDAM) for shaping classical beams. The UDAM is made up of an array of three-waveguide couplers, where the propagation of acoustic waves mimics the evolution of NHQTs. The excellent agreement among analytical predictions, numerical simulations, and experimental measurements confirms the great applicability of NHQTs in acoustic metamaterial engineering. The present work extends research on NHQTs from quantum physics to the field of classical waves for designing metamaterials with simple structures and may pave a new way to design UDAMs that would be of potential applications in acoustic isolation, communication, and stealth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Cheng, Sci. China-Phys. Mech. Astron. 64, 244301 (2021).

    Article  ADS  Google Scholar 

  2. S. A. Cummer, J. Christensen, and A. Alú, Nat. Rev. Mater. 1, 16001 (2016).

    Article  ADS  Google Scholar 

  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

    Article  ADS  Google Scholar 

  4. C. B. Hu, B. Liang, J. Yang, and J. C. Cheng, Sci. China-Phys. Mech. Astron. 64, 244304 (2021).

    Article  ADS  Google Scholar 

  5. B. Xie, K. Tang, H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater. 29, 1603507 (2017).

    Article  Google Scholar 

  6. D. T. Li, S. B. Huang, Y. Cheng, and Y. Li, Sci. China-Phys. Mech. Astron. 64, 244303 (2021).

    Article  ADS  Google Scholar 

  7. X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian, and S. Liu, Nat. Commun. 7, 11731 (2016).

    Article  ADS  Google Scholar 

  8. B. Liang, B. Yuan, and J. Cheng, Phys. Rev. Lett. 103, 104301 (2009).

    Article  ADS  Google Scholar 

  9. B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat. Mater. 9, 989 (2010).

    Article  ADS  Google Scholar 

  10. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).

    Article  ADS  Google Scholar 

  11. Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Phys. Rev. Lett. 119, 035501 (2017).

    Article  ADS  Google Scholar 

  12. J. Zhu, X. Zhu, X. Yin, Y. Wang, and X. Zhang, Phys. Rev. Appl. 13, 041001 (2020).

    Article  ADS  Google Scholar 

  13. T. Liu, G. Ma, S. Liang, H. Gao, Z. Gu, S. An, and J. Zhu, Phys. Rev. B 102, 014306 (2020).

    Article  ADS  Google Scholar 

  14. X. Wang, X. Fang, D. Mao, Y. Jing, and Y. Li, Phys. Rev. Lett. 123, 214302 (2019), arXiv: 1903.06374.

    Article  ADS  Google Scholar 

  15. X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, Phys. Rev. X 4, 031042 (2014).

    Google Scholar 

  16. T. Liu, X. Zhu, F. Chen, S. Liang, and J. Zhu, Phys. Rev. Lett. 120, 124502 (2018).

    Article  ADS  Google Scholar 

  17. Y. X. Shen, Y. G. Peng, D. G. Zhao, X. C. Chen, J. Zhu, and X. F. Zhu, Phys. Rev. Lett. 122, 094501 (2019).

    Article  ADS  Google Scholar 

  18. Y.-X. Shen, L.-S. Zeng, Z.-G. Geng, D.-G. Zhao, Y.-G. Peng, J. Zhu, and X.-F. Zhu, Sci. China-Phys. Mech. Astron. 64, 244302 (2021).

    Article  ADS  Google Scholar 

  19. Y. X. Shen, L. S. Zeng, Z. G. Geng, D. G. Zhao, Y. G. Peng, and X. F. Zhu, Phys. Rev. Appl. 14, 014043 (2020).

    Article  ADS  Google Scholar 

  20. L. S. Zeng, Y. X. Shen, Y. G. Peng, D. G. Zhao, and X. F. Zhu, Phys. Rev. Appl. 15, 064018 (2021).

    Article  ADS  Google Scholar 

  21. Z. G. Chen, W. Tang, R. Y. Zhang, Z. Chen, and G. Ma, Phys. Rev. Lett. 126, 054301 (2021).

    Article  ADS  Google Scholar 

  22. C. Y. Qiu, Sci. China-Phys. Mech. Astron. 64, 244305 (2021).

    Article  ADS  Google Scholar 

  23. E. Knill, Nature 463, 441 (2010).

    Article  ADS  Google Scholar 

  24. J. Preskill, arXiv: 2106.10522.

  25. P. Zanardi, and M. Rasetti, Phys. Lett. A 264, 94 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).

    Article  ADS  Google Scholar 

  27. F. Wilczek, and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  28. L. M. Duan, J. I. Cirac, and P. Zoller, Science 292, 1695 (2001), arXiv: quant-ph/0111086.

    Article  ADS  Google Scholar 

  29. S. L. Zhu, and Z. D. Wang, Phys. Rev. Lett. 89, 097902 (2002), arXiv: quant-ph/0207037.

    Article  ADS  Google Scholar 

  30. B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Phys. Rev. Lett. 123, 100501 (2019), arXiv: 1806.07904.

    Article  ADS  Google Scholar 

  31. T. Chen, and Z. Y. Xue, Phys. Rev. Appl. 14, 064009 (2020), arXiv: 2001.05789.

    Article  ADS  Google Scholar 

  32. T. Chen, P. Shen, and Z. Y. Xue, Phys. Rev. Appl. 14, 034038 (2020), arXiv: 2004.11132.

    Article  ADS  Google Scholar 

  33. G. L. Long, Sci. China-Phys. Mech. Astron. 64, 250361 (2021).

    Article  ADS  Google Scholar 

  34. P. Z. Zhao, Z. J. Z. Dong, Z. X. Zhang, G. P. Guo, D. M. Tong, and Y. Yin, Sci. China-Phys. Mech. Astron. 64, 250362 (2021).

    Article  ADS  Google Scholar 

  35. F. Setiawan, P. Groszkowski, H. Ribeiro, and A. A. Clerk, PRX Quantum 2, 030306 (2021), arXiv: 2102.02370.

    Article  ADS  Google Scholar 

  36. J. W. Zhang, L. L. Yan, J. C. Li, G. Y. Ding, J. T. Bu, L. Chen, S. L. Su, F. Zhou, and M. Feng, Phys. Rev. Lett. 127, 030502 (2021), arXiv: 2106.09961.

    Article  ADS  Google Scholar 

  37. B. J. Liu, Y. S. Wang, and M. H. Yung, Phys. Rev. Res. 3, L032066 (2021), arXiv: 2008.02176.

    Article  Google Scholar 

  38. L. A. Wu, P. Zanardi, and D. A. Lidar, Phys. Rev. Lett. 95, 130501 (2005), arXiv: quant-ph/0506086.

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, New J. Phys. 14, 103035 (2012), arXiv: 1107.5127.

    Article  ADS  MathSciNet  Google Scholar 

  40. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Phys. Rev. Lett. 109, 170501 (2012), arXiv: 1210.6782.

    Article  ADS  Google Scholar 

  41. G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501 (2013), arXiv: 1302.0384.

    Article  ADS  Google Scholar 

  42. A. A. Abdumalikov Jr, J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff, and S. Filipp, Nature 496, 482 (2013), arXiv: 1304.5186.

    Article  ADS  Google Scholar 

  43. C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, Nature 514, 72 (2014), arXiv: 1411.3157.

    Article  ADS  Google Scholar 

  44. S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Nat. Commun. 5, 4870 (2014).

    Article  ADS  Google Scholar 

  45. Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, Nat. Photon. 11, 309 (2017), arXiv: 1710.04885.

    Article  ADS  Google Scholar 

  46. H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017), arXiv: 1703.10348.

    Article  ADS  Google Scholar 

  47. B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard, and D. D. Awschalom, Phys. Rev. Lett. 119, 140503 (2017), arXiv: 1705.00654.

    Article  ADS  Google Scholar 

  48. G. F. Xu, P. Z. Zhao, D. M. Tong, and E. Sjöqvist, Phys. Rev. A 95, 052349 (2017), arXiv: 1705.08278.

    Article  ADS  Google Scholar 

  49. J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.

    Article  ADS  Google Scholar 

  50. Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Phys. Rev. Lett. 121, 110501 (2018), arXiv: 1804.07591.

    Article  ADS  Google Scholar 

  51. G. F. Xu, D. M. Tong, and E. Sjöqvist, Phys. Rev. A 98, 052315 (2018), arXiv: 1810.10736.

    Article  ADS  Google Scholar 

  52. T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Phys. Rev. Lett. 122, 080501 (2019), arXiv: 1804.08142.

    Article  ADS  Google Scholar 

  53. N. Ramberg, and E. Sjöqvist, Phys. Rev. Lett. 122, 140501 (2019), arXiv: 1812.02927.

    Article  ADS  Google Scholar 

  54. B. J. Liu, S. L. Su, and M. H. Yung, Phys. Rev. Res. 2, 043130 (2020), arXiv: 2005.06949.

    Article  Google Scholar 

  55. Y. H. Chen, W. Qin, R. Stassi, X. Wang, and F. Nori, Phys. Rev. Res. 3, 033275 (2021), arXiv: 2012.06090.

    Article  Google Scholar 

  56. J. L. Wu, Y. Wang, J. X. Han, Y. Jiang, J. Song, Y. Xia, S. L. Su, and W. Li, Phys. Rev. Appl. 16, 064031 (2021), arXiv: 2012.02935.

    Article  ADS  Google Scholar 

  57. G. F. Xu, P. Z. Zhao, E. Sjöqvist, and D. M. Tong, Phys. Rev. A 103, 052605 (2021), arXiv: 2102.00603.

    Article  ADS  MathSciNet  Google Scholar 

  58. P. Shen, T. Chen, and Z. Y. Xue, Phys. Rev. Appl. 16, 044004 (2021), arXiv: 2108.01531.

    Article  ADS  Google Scholar 

  59. S. Li, and Z. Y. Xue, Phys. Rev. Appl. 16, 044005 (2021), arXiv: 2012.09034.

    Article  ADS  Google Scholar 

  60. Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, Appl. Phys. Lett. 101, 233508 (2012).

    Article  ADS  Google Scholar 

  61. Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Nat. Commun. 10, 2326 (2019).

    Article  ADS  Google Scholar 

  62. J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Phys. Rev. Appl. 10, 014016 (2018).

    Article  ADS  Google Scholar 

  63. Y. Y. Fu, J. Q. Tao, A. L. Song, Y. W. Liu, and Y. D. Xu, Front. Phys. 15, 52502 (2020), arXiv: 2006.00780.

    Article  ADS  Google Scholar 

  64. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

    Article  ADS  Google Scholar 

  65. P. Král, I. Thanopulos, and M. Shapiro, Rev. Mod. Phys. 79, 53 (2007).

    Article  ADS  Google Scholar 

  66. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017), arXiv: 1605.00224.

    Article  ADS  Google Scholar 

  67. E. Paspalakis, Opt. Commun. 258, 30 (2006).

    Article  ADS  Google Scholar 

  68. H. S. Hristova, A. A. Rangelov, G. Montemezzani, and N. V. Vitanov, Phys. Rev. A 93, 033802 (2016).

    Article  ADS  Google Scholar 

  69. J. Chen, L. Deng, Y. Niu, and S. Gong, Phys. Rev. A 103, 053705 (2021).

    Article  ADS  Google Scholar 

  70. A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962).

    MATH  Google Scholar 

  71. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014), arXiv: 1406.6306.

    Article  ADS  Google Scholar 

  72. J. F. Haase, Z. Y. Wang, J. Casanova, and M. B. Plenio, Phys. Rev. Lett. 121, 050402 (2018), arXiv: 1708.09611.

    Article  ADS  MathSciNet  Google Scholar 

  73. G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Phys. Rev. A 92, 052302 (2015), arXiv: 1511.00919.

    Article  ADS  Google Scholar 

  74. E. Sjöqvist, Phys. Lett. A 380, 65 (2016), arXiv: 1511.00911.

    Article  ADS  MathSciNet  Google Scholar 

  75. E. Herterich, and E. Sjöqvist, Phys. Rev. A 94, 052310 (2016), arXiv: 1608.07418.

    Article  ADS  Google Scholar 

  76. Z. P. Hong, B. J. Liu, J. Q. Cai, X. D. Zhang, Y. Hu, Z. D. Wang, and Z. Y. Xue, Phys. Rev. A 97, 022332 (2018), arXiv: 1710.03141.

    Article  ADS  Google Scholar 

  77. W. Li, F. Meng, and X. Huang, Appl. Phys. Lett. 117, 021901 (2020).

    Article  ADS  Google Scholar 

  78. S. Tang, B. Ren, Y. Feng, J. Song, and Y. Jiang, Appl. Phys. Lett. 119, 071907 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Song, ShiLei Su or YongYuan Jiang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11675046, 21973023, and 11804308), the Program for Innovation Research of Science in Harbin Institute of Technology (Grant No. A201412), the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (Grant No. LBH-Q15060), and the Natural Science Foundation of Henan Province (Grant No. 202300410481). We thank the HPC Studio at School of Physics of Harbin Institute of Technology 37 for access to computing resources through INSPUR-HPC@PHY.HIT.EDU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Tang, S., Wang, Y. et al. Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Sci. China Phys. Mech. Astron. 65, 220311 (2022). https://doi.org/10.1007/s11433-021-1810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1810-6

Keywords

Navigation