Skip to main content
Log in

Experimental demonstration of a three-dimensional omnidirectional and broadband acoustic concentrator using an anisotropic metamaterial

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report the theoretical design and experimental demonstration of a three-dimensional (3D) omnidirectional and broadband metamaterial-based concentrator for airborne sound. The proposed mechanism uses a homogeneous anisotropic acoustic metamaterial with an ellipsoidal equifrequency contour to efficiently redirect the acoustic energy impinging on its outer surface into the central region, regardless of the incident direction. A design of the metamaterial unit cell is proposed as a practical implementation of our strategy, which is simply realized by perforating a solid spherical shell with a linearly shrinking cross section in the radial direction. We analytically and numerically prove that the non-resonant anisotropic effective acoustic parameters required for building the concentrator are produced with such a design. Good agreement is observed between the theoretical predictions and experimental measurements. An effective concentration of the incident acoustic energy is observed within a broadband that ranges 1000–1600 Hz. The experimental realization of this 3D acoustic concentrator with a simple design, low energy loss, replaceable constituent material, and omnidirectional and broadband functionality offers new possibilities for acoustic manipulations and may have important applications in a plethora of scenarios ranging from energy harvesting to noise mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, Am. J. Roentgenol. 190, 191 (2008).

    Article  Google Scholar 

  2. S. Lin, Ultrasonics 49, 206 (2009).

    Article  Google Scholar 

  3. S. Kay, and J. Salisbury, J. Acoust. Soc. Am. 87, 1603 (1990).

    Article  ADS  Google Scholar 

  4. L. Sandrin, S. Catheline, M. Tanter, X. Hennequin, and M. Fink, Ultrason Imag. 21, 259 (1999).

    Article  Google Scholar 

  5. T. Nakamura, Y. Sato, T. Kamakura, and T. Anada, Jpn. J. Appl. Phys. 43, 3163 (2004).

    Article  ADS  Google Scholar 

  6. Y. Sato, K. Mizutani, N. Wakatsuki, and T. Nakamura, Jpn. J. Appl. Phys. 47, 4354 (2008).

    Article  ADS  Google Scholar 

  7. C. Chang, K. Firouzi, K. Kyu Park, A. F. Sarioglu, A. Nikoozadeh, H. S. Yoon, S. Vaithilingam, T. Carver, and B. T. Khuri-Yakub, J. Micromech. Microeng. 24, 085007 (2014).

    Article  ADS  Google Scholar 

  8. J. Li, and C. T. Chan, Phys. Rev. E 70, 055602 (2004).

    Article  ADS  Google Scholar 

  9. R. Q. Li, X. F. Zhu, B. Liang, Y. Li, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 99, 193507 (2011).

    Article  ADS  Google Scholar 

  10. Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, Appl. Phys. Lett. 101, 233508 (2012).

    Article  ADS  Google Scholar 

  11. Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, Appl. Phys. Lett. 103, 053505 (2013).

    Article  ADS  Google Scholar 

  12. Y. Li, B. Liang, Z. M. Gu, X. Y. Zou, and J. C. Cheng, Sci. Rep. 3, 2546 (2013).

    Article  Google Scholar 

  13. Y. Li, X. Jiang, R. Li, B. Liang, X. Zou, L. Yin, and J. Cheng, Phys. Rev. Appl. 2, 064002 (2014), arXiv: 1407.1138.

    Article  ADS  Google Scholar 

  14. S. A. Cummer, and D. Schurig, New J. Phys. 9, 45 (2007).

    Article  ADS  Google Scholar 

  15. H. Chen, and C. T. Chan, Appl. Phys. Lett. 91, 183518 (2007).

    Article  ADS  Google Scholar 

  16. H. Chen, and C. T. Chan, J. Phys. D-Appl. Phys. 43, 113001 (2010).

    Article  ADS  Google Scholar 

  17. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photon. Nanostruct.-fundament. Appl. 6, 87 (2008).

    Article  ADS  Google Scholar 

  18. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, Appl. Phys. Lett. 92, 264101 (2008).

    Article  ADS  Google Scholar 

  19. K. Zhang, Q. Wu, J. H. Fu, and L. W. Li, J. Opt. Soc. Am. B 28, 1573 (2011).

    Article  ADS  Google Scholar 

  20. Y. R. Wang, H. Zhang, S. Y. Zhang, L. Fan, and H. X. Sun, J. Acoust. Soc. Am. 131, EL150 (2012).

    Article  Google Scholar 

  21. M. H. Fakheri, A. Abdolali, and H. B. Sedeh, Phys. Rev. Appl. 13, 034004 (2020), arXiv: 1812.07442.

  22. A. D. Boardman, V. V. Grimalsky, and Y. G. Rapoport, in Nonlinear transformational optics and electromagnetic and acoustic fields concentrators: The Fourth International Workshop on Theoretical and Computational Nanophotonics: Tacona-Photonics 2011 (American Institute of Physics, Bad Honnef, 2011), pp. 120–122.

    Google Scholar 

  23. J. Yang, M. Huang, C. Yang, and G. Cai, J. Vib. Acoust. 133, 061016 (2011).

    Article  Google Scholar 

  24. Q. Wei, Y. Cheng, and X. Liu, Phys. Rev. B 86, 024303 (2012).

    Article  ADS  Google Scholar 

  25. T. Li, M. Huang, J. Yang, Y. Li, and J. Yu, Acoust. Phys. 58, 642 (2012).

    Article  ADS  Google Scholar 

  26. C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Phys. Rev. Lett. 121, 104501 (2018).

    Article  ADS  Google Scholar 

  27. D. Torrent, and J. Sánchez-Dehesa, New J. Phys. 10, 063015 (2008).

    Article  ADS  Google Scholar 

  28. A. Climente, D. Torrent, and J. Sánchez-Dehesa, Appl. Phys. Lett. 100, 144103 (2012).

    Article  ADS  Google Scholar 

  29. D. Torrent, and J. Sánchez-Dehesa, New J. Phys. 10, 023004 (2008).

    Article  ADS  Google Scholar 

  30. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nat. Mater 8, 931 (2009).

    Article  ADS  Google Scholar 

  31. Z. Gu, X Jiang, B. Liang, Y. Li, X. Zou, L. Yin, and J. Cheng, J. Appl. Phys. 117, 074502 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liang.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006, 11374157 and 81127901), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Liang, B., Yang, J. et al. Experimental demonstration of a three-dimensional omnidirectional and broadband acoustic concentrator using an anisotropic metamaterial. Sci. China Phys. Mech. Astron. 64, 244304 (2021). https://doi.org/10.1007/s11433-020-1621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1621-1

Keywords

Navigation