Skip to main content
Log in

Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Geometric phases are only dependent on evolution paths but independent of evolution details so that they possess some intrinsic noise-resilience features. Based on different geometric phases, various quantum gates have been proposed, such as nonadiabatic geometric gates based on nonadiabatic Abelian geometric phases and nonadiabatic holonomic gates based on nonadiabatic non-Abelian geometric phases. Up to now, nonadiabatic holonomic one-qubit gates have been experimentally demonstrated with superconducting transmons, where the three lowest levels are all utilized in operation. However, the second excited state of transmons has a relatively short coherence time, which results in a decreased fidelity of quantum gates. Here, we experimentally realize Abelian-geometric-phase-based nonadiabatic geometric one-qubit gates with a superconducting Xmon qubit. The realization is performed on the two lowest levels of an Xmon qubit and thus avoids the influence from the short coherence time of the second excited state. The experimental result indicates that the average fidelities of single-qubit gates can be up to 99.6% and 99.7% characterized by quantum process tomography and randomized benchmarking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, Phys. Rev. Lett. 89, 247902 (2002), arXiv: quant-ph/0207072.

    Article  ADS  Google Scholar 

  2. G. De Chiara, and G. M. Palma, Phys. Rev. Lett. 91, 090404 (2003), arXiv: quant-ph/0303155.

    Article  ADS  Google Scholar 

  3. A. Carollo, I. Fuentes-Guridi, M. F. Santos, and V. Vedral, Phys. Rev. Lett. 92, 020402 (2004), arXiv: quant-ph/0306178.

    Article  ADS  Google Scholar 

  4. P. Solinas, P. Zanardi, and N. Zanghì, Phys. Rev. A 70, 042316 (2004), arXiv: quant-ph/0312109.

    Article  ADS  MathSciNet  Google Scholar 

  5. S. L. Zhu, and P. Zanardi, Phys. Rev. A 72, 020301(R) (2005), arXiv: quant-ph/0407177.

    Article  ADS  Google Scholar 

  6. J. T. Thomas, M. Lababidi, and M. Tian, Phys. Rev. A 84, 042335 (2011).

    Article  ADS  Google Scholar 

  7. M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Phys. Rev. A 86, 062322 (2012), arXiv: 1204.5144.

    Article  ADS  Google Scholar 

  8. P. Zanardi, and M. Rasetti, Phys. Lett. A 264, 94 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature 403, 869 (2000), arXiv: quant-ph/9910052.

    Article  ADS  Google Scholar 

  10. L. M. Duan, Science 292, 1695 (2001), arXiv: quant-ph/0111086.

    Article  ADS  Google Scholar 

  11. M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).

    Article  ADS  Google Scholar 

  12. F. Wilczek, and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  13. X.-B. Wang, and K. Matsumoto, Phys. Rev. Lett. 87, 097901 (2001), arXiv: quant-ph/0101038.

    Article  Google Scholar 

  14. S. L. Zhu, and Z. D. Wang, Phys. Rev. Lett. 89, 097902 (2002), arXiv: quant-ph/0207037.

    Article  ADS  Google Scholar 

  15. Y. Aharonov, and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M. Johansson, and K. Singh, New J. Phys. 14, 103035 (2012), arXiv: 1107.5127.

    Article  ADS  MathSciNet  Google Scholar 

  17. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Phys. Rev. Lett. 109, 170501 (2012), arXiv: 1210.6782.

    Article  ADS  Google Scholar 

  18. J. Anandan, Phys. Lett. A 133, 171 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. L. Zhu, and Z. D. Wang, Phys. Rev. Lett. 91, 187902 (2003), arXiv: quant-ph/0306166.

    Article  ADS  Google Scholar 

  20. X. L. Feng, C. Wu, H. Sun, and C. H. Oh, Phys. Rev. Lett. 103, 200501 (2009).

    Article  ADS  Google Scholar 

  21. Y. Ota, and Y. Kondo, Phys. Rev. A 80, 024302 (2009), arXiv: 0903.2295.

    Article  ADS  Google Scholar 

  22. J. Spiegelberg, and E. Sjöqvist, Phys. Rev. A 88, 054301 (2013), arXiv: 1307.1536.

    Article  ADS  Google Scholar 

  23. G. Xu, and G. Long, Phys. Rev. A 90, 022323 (2014).

    Article  ADS  Google Scholar 

  24. Z. T. Liang, Y. X. Du, W. Huang, Z. Y. Xue, and H. Yan, Phys. Rev. A 89, 062312 (2014).

    Article  ADS  Google Scholar 

  25. Z. Y. Xue, J. Zhou, and Z. D. Wang, Phys. Rev. A 92, 022320 (2015), arXiv: 1504.03393.

    Article  ADS  Google Scholar 

  26. G. F. Xu, C. L. Liu, P. Z. Zhao, and D. M. Tong, Phys. Rev. A 92, 052302 (2015), arXiv: 1511.00919.

    Article  ADS  Google Scholar 

  27. E. Sjöqvist, Phys. Lett. A 380, 65 (2016), arXiv: 1511.00911.

    Article  ADS  MathSciNet  Google Scholar 

  28. V. V. Albert, C. Shu, S. Krastanov, C. Shen, R. B. Liu, Z. B. Yang, R. J. Schoelkopf, M. Mirrahimi, M. H. Devoret, and L. Jiang, Phys. Rev. Lett. 116, 140502 (2016), arXiv: 1503.00194.

    Article  ADS  Google Scholar 

  29. P. Z. Zhao, G. F. Xu, and D. M. Tong, Phys. Rev. A 94, 062327 (2016), arXiv: 1612.08466.

    Article  ADS  Google Scholar 

  30. E. Herterich, and E. Sjöqvist, Phys. Rev. A 94, 052310 (2016), arXiv: 1608.07418.

    Article  ADS  Google Scholar 

  31. P. Z. Zhao, G. F. Xu, Q. M. Ding, E. Sjöqvist, and D. M. Tong, Phys. Rev. A 95, 062310 (2017), arXiv: 1706.02967.

    Article  ADS  Google Scholar 

  32. P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Phys. Rev. A 96, 052316 (2017), arXiv: 1711.04917.

    Article  ADS  Google Scholar 

  33. T. Chen, and Z. Y. Xue, Phys. Rev. Appl. 10, 054051 (2018), arXiv: 1808.02839.

    Article  ADS  Google Scholar 

  34. P. Z. Zhao, X. Wu, T. H. Xing, G. F. Xu, and D. M. Tong, Phys. Rev. A 98, 032313 (2018), arXiv: 1811.00840.

    Article  ADS  Google Scholar 

  35. P. Z. Zhao, G. F. Xu, and D. M. Tong, Phys. Rev. A 99, 052309 (2019), arXiv: 1912.09796.

    Article  ADS  Google Scholar 

  36. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Nature 422, 412 (2003).

    Article  ADS  Google Scholar 

  37. J. Du, P. Zou, and Z. D. Wang, Phys. Rev. A 74, 020302(R) (2006), arXiv: quant-ph/0512036.

    Article  ADS  Google Scholar 

  38. G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501 (2013), arXiv: 1302.0384.

    Article  ADS  Google Scholar 

  39. H. Li, Y. Liu, and G. L. Long, Sci. China-Phys. Mech. Astron. 60, 080311 (2017), arXiv: 1703.10348.

    Article  ADS  Google Scholar 

  40. A. A. Abdumalikov Jr., J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff, and S. Filipp, Nature 496, 482 (2013), arXiv: 1304.5186.

    Article  ADS  Google Scholar 

  41. Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Phys. Rev. Lett. 121, 110501 (2018), arXiv: 1804.07591.

    Article  ADS  Google Scholar 

  42. Z. Zhang, P. Z. Zhao, T. Wang, L. Xiang, Z. Jia, P. Duan, D. M. Tong, Y. Yin, and G. Guo, New J. Phys. 21, 073024 (2019), arXiv: 1811.06252.

    Article  ADS  Google Scholar 

  43. S. Danilin, A. Vepsäläinen, and G. S. Paraoanu, Phys. Scr. 93, 055101 (2018), arXiv: 1804.01759.

    Article  ADS  Google Scholar 

  44. D. J. Egger, M. Ganzhorn, G. Salis, A. Fuhrer, P. Müller, P. K. Barkoutsos, N. Moll, I. Tavernelli, and S. Filipp, Phys. Rev. Appl. 11, 014017 (2019), arXiv: 1804.04900.

    Article  ADS  Google Scholar 

  45. C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, Nature 514, 72 (2014), arXiv: 1411.3157.

    Article  ADS  Google Scholar 

  46. S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Nat. Commun. 5, 4870 (2014).

    Article  ADS  Google Scholar 

  47. B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard, and D. D. Awschalom, Phys. Rev. Lett. 119, 140503 (2017), arXiv: 1705.00654.

    Article  ADS  Google Scholar 

  48. Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, Nat. Photon. 11, 309 (2017), arXiv: 1710.04885.

    Article  ADS  Google Scholar 

  49. K. Nagata, K. Kuramitani, Y. Sekiguchi, and H. Kosaka, Nat. Commun. 9, 3227 (2018).

    Article  ADS  Google Scholar 

  50. N. Ishida, T. Nakamura, T. Tanaka, S. Mishima, H. Kano, R. Kuroiwa, Y. Sekiguchi, and H. Kosaka, Opt. Lett. 43, 2380 (2018).

    Article  ADS  Google Scholar 

  51. F. Zhang, J. Zhang, P. Gao, and G. Long, Phys. Rev. A 100, 012329 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  52. J. Zhang, T. H. Kyaw, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Sci. Rep. 5, 18414 (2015).

    Article  ADS  Google Scholar 

  53. Z. T. Liang, X. Yue, Q. Lv, Y. X. Du, W. Huang, H. Yan, and S. L. Zhu, Phys. Rev. A 93, 040305(R) (2016), arXiv: 1604.07914.

    Article  ADS  Google Scholar 

  54. M. V. Berry, J. Phys. A-Math. Theor. 42, 365303 (2009).

    Article  Google Scholar 

  55. F. Kleißler, A. Lazariev, and S. Arroyo-Camejo, npj Quantum Inf. 4, 49 (2018), arXiv: 1804.10983.

    Article  ADS  Google Scholar 

  56. T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Phys. Rev. Lett. 122, 080501 (2019), arXiv: 1804.08142.

    Article  ADS  Google Scholar 

  57. T. Wang, Z. Zhang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Gong, Z. Zong, M. Wu, J. Wu, L. Sun, Y. Yin, and G. Guo, New J. Phys. 20, 065003 (2018), arXiv: 1804.08247.

    Article  ADS  Google Scholar 

  58. A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Sci. Adv. 5, eaau5999 (2019), arXiv: 1911.06796.

    Article  ADS  Google Scholar 

  59. A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Quantum Sci. Technol. 3, 024006 (2018), arXiv: 1904.05598.

    Article  ADS  Google Scholar 

  60. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  61. R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. OMalley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 111, 080502 (2013), arXiv: 1304.2322.

    Article  ADS  Google Scholar 

  62. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. OMalley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Nature 508, 500 (2014), arXiv: 1402.4848.

    Article  ADS  Google Scholar 

  63. J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. OMalley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, Nature 519, 66 (2015).

    Article  ADS  Google Scholar 

  64. J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502 (2009), arXiv: 0811.4387.

    Article  ADS  Google Scholar 

  65. E. Magesan, J. M. Gambetta, and J. Emerson, Phys. Rev. Lett. 106, 180504 (2011), arXiv: 1009.3639.

    Article  ADS  Google Scholar 

  66. E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen, Phys. Rev. Lett. 109, 080505 (2012), arXiv: 1203.4550.

    Article  ADS  Google Scholar 

  67. X. Wang, Z. Sun, and Z. D. Wang, Phys. Rev. A 79, 012105 (2009), arXiv: 0803.2940.

    Article  ADS  Google Scholar 

  68. Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Phys. Rev. Lett. 124, 230503 (2020), arXiv: 1910.12271.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DianMin Tong or Yi Yin.

Additional information

This work was supported by the National Basic Research Program of China (Grant No. 2015CB921004), the National Key Research and Development Program of China (Grant Nos. 2019YFA0308602, and 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 11934010, and 11775129), the Fundamental Research Funds for the Central Universities in China, and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY080000). Yi Yin acknowledge the funding support from Tencent Corporation. This work was partially conducted at the Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Dong, Z., Zhang, Z. et al. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron. 64, 250362 (2021). https://doi.org/10.1007/s11433-020-1641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1641-1

Keywords

Navigation