Skip to main content
Log in

High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume (main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Barth, and P. O. Frederickson, "Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction", AIAA Paper No. 90 0013 (1990).

    Google Scholar 

  2. M. Delanaye, "Quadratic reconstruction finite volume schemes on 3D arbitrary unstrtictured polyhedral grids", AIAA Paper No. 99 3295 (1989).

    Google Scholar 

  3. C. Ollivier-Gooch, and M. Van Altena, J. Comp. Phys. 181 729 (2002).

    Article  ADS  Google Scholar 

  4. C. F. Ollivier-Gooch, J. Comp. Phys. 133 6 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Abgrall, J. Comp. Phys. 114 45 (1994).

    Article  ADS  Google Scholar 

  6. O. Friedrich, J. Comp. Phys. 144 194 (1998).

    Article  ADS  Google Scholar 

  7. M. Dumbser, and M. Kaser, J. Comp. Phys. 221 693 (2007).

    Article  ADS  Google Scholar 

  8. M. Dumbser, M. Kaser, V. A. Titarev, and E. F. Toro, J. Comp. Phys. 226 204 (2007).

    Article  ADS  Google Scholar 

  9. C. Hu, and C. W. Shu, J. Comp. Phys. 150 97 (1999).

    Article  ADS  Google Scholar 

  10. W. Li, and Y. X. Ren, Int. J. Numer. Meth. Fluids 70 742 (2012).

    Article  Google Scholar 

  11. W. Li, and Y. X. Ren, Comp. Fluids 96 368 (2014).

    Article  Google Scholar 

  12. W. H. Reed, and T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Report (LA-UR-73-479).

  13. B. Cockburn, and C. W. Shu, Math. Comput. 52 411 (1989).

    Google Scholar 

  14. B. Cockburn, S. Y. Lin, and C. W. Shu, J. Comp. Phys. 84 90 (1989).

    Article  ADS  Google Scholar 

  15. B. Cockburn, S. Hou, and C. W. Shu, Math. Comput. 54 545 (1990).

    ADS  Google Scholar 

  16. B. Cockburn, and C. W. Shu, SIAM J. Numer. Anal. 35 2440 (1998).

    Article  MathSciNet  Google Scholar 

  17. F. Bassi, and S. Rebay, J. Comp. Phys. 131 267 (1997).

    Article  ADS  Google Scholar 

  18. Z. J. Wang, J. Comp. Phys. 178 210 (2002).

    Article  ADS  Google Scholar 

  19. Z. J. Wang, and Y. Liu, J. Comp. Phys. 179 665 (2002).

    Article  ADS  Google Scholar 

  20. Z. J. Wang, and Y. Liu, J. Sci. Comput. 20 137 (2004).

    Article  MathSciNet  Google Scholar 

  21. Z. J. Wang, L. Zhang, and Y. Liu, J. Comp. Phys. 194 716 (2004).

    Article  ADS  Google Scholar 

  22. M. Dumbser, Comput. Fluids 39 60 (2010).

    Article  MathSciNet  Google Scholar 

  23. M. Dumbser, and O. Zanotti, J. Comp. Phys. 228 6991 (2009).

    Article  ADS  Google Scholar 

  24. L. Zhang, L. W. Liu, L. X. He, X. G. Deng, and H. X. Zhang, J. Comp. Phys. 231 1081 (2012).

    Article  ADS  Google Scholar 

  25. L. Zhang, W. Liu, L. X. He, X. G. Deng, and H. X. Zhang, J. Comp. Phys. 231 1104 (2012).

    Article  ADS  Google Scholar 

  26. L. Zhang, W. Liu, L. He, and X. Deng, Commun. Commut. Phys. 12 284 (2012).

    Article  Google Scholar 

  27. L. Zhang, W. Liu, M. Li, X. He, and H. Zhang, Comput. Fluids 97 110 (2014).

    Article  MathSciNet  Google Scholar 

  28. H. Luo, L. Luo, R. Nourgaliev, V. A. Mousseau, and N. Dinh, J. Comp. Phys. 229 6961 (2010).

    Article  ADS  Google Scholar 

  29. D. W. Zingg, S. De Rango, M. Nemec, and T. H. Pulliam, J. Comp. Phys. 160 683 (2000).

    Article  ADS  Google Scholar 

  30. J. Pan, and Y. Ren, in High order sub-cell finite volume method in solving hyperbolic conservation laws: Proceedings of 22nd A/AA Computational Fluid Dynamics Conference (American Institute of Aeronautics and Astronautics, Dallas, 2015), p. 2286.

    Google Scholar 

  31. J. Pan, Y. Ren, and Y. Sun, J. Comp. Phys. 338 165 (2017).

    Article  ADS  Google Scholar 

  32. P. L. Roe, J. Comp. Phys. 43 357 (1981).

    Article  ADS  Google Scholar 

  33. S. Gottlieb, C. W. Shu, and E. Tadmor, SIAM Rev. 43 89 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  34. F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera, J. Comp. Phys. 151 921 (1999).

    Article  ADS  Google Scholar 

  35. S. K. Lele, J. Comp. Phys. 103 16 (1992).

    Article  ADS  Google Scholar 

  36. K. Van den Abeele, T. Broeckhoven, and C. Lacor, J. Comp. Phys. 224 616 (2007).

    Article  ADS  Google Scholar 

  37. C. W. Shu, Essentially Non-Oscillatory and Weighted Essentially NonOscillatory Schemes for Hyperbolic Conservation Laws (Springer, Berlin, Heidelberg, 1998).

    MATH  Google Scholar 

  38. G. S. Jiang, and C. W. Shu, J. Comput. Phys. 126 202 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  39. G. A. Sod, J. Comp. Phys. 27 1 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  40. P. D. Lax, Comm. Pure Appl. Math. 7 159 (1954).

    Article  MathSciNet  Google Scholar 

  41. P. Woodward, and P. Colella, J. Comp. Phys. 54 115 (1984).

    Article  ADS  Google Scholar 

  42. C. W. Shu, and S. Osher, J. Comp. Phys. 77 439 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuXin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Ren, Y. High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis. Sci. China Phys. Mech. Astron. 60, 084711 (2017). https://doi.org/10.1007/s11433-017-9033-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9033-9

Keywords

Navigation