Skip to main content
Log in

On the maximum principle and high-order, delay-free integrators for the viscous Cahn–Hilliard equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The stabilization approach has been known to permit large time-step sizes while maintaining stability. However, it may “slow down the convergence rate” or cause “delayed convergence” if the time-step rescaling is not well resolved. By considering a fourth-order-in-space viscous Cahn–Hilliard (VCH) equation, we propose a class of up to the fourth-order single-step methods that are able to capture the correct physical behaviors with high-order accuracy and without time delay. By reformulating the VCH as a system consisting of a second-order diffusion term and a nonlinear term involving the operator \(({I} - \nu \Delta )^{-1}\), we first develop a general approach to estimate the maximum bound for the VCH equation equipped with either the Ginzburg–Landau or Flory–Huggins potential. Then, by taking advantage of new recursive approximations and adopting a time-step-dependent stabilization, we propose a class of stabilization Runge–Kutta methods that preserve the maximum principle for any time-step size without harming the convergence. Finally, we transform the stabilization method into a parametric Runge–Kutta formulation, estimate the rescaled time-step, and remove the time delay by means of a relaxation technique. When the stabilization parameter is chosen suitably, the proposed parametric relaxation integrators are rigorously proven to be mass-conserving, maximum-principle-preserving, and the convergence in the \(l^\infty \)-norm is estimated with pth-order accuracy under mild regularity assumption. Numerical experiments on multi-dimensional benchmark problems are carried out to demonstrate the stability, accuracy, and structure-preserving properties of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the manuscript.

Code availability

Custom code.

References

  1. Acosta-Soba, D., Guillén-González, F., Rodríguez-Galván, J.R.: An upwind DG scheme preserving the maximum principle for the convective Cahn–Hilliard model. (2021) arXiv:2111.07313

  2. Bai, F., Elliott, C., Gardiner, A., Spence, A., Stuart, A.: The viscous Cahn-Hilliard equation. I. computations. Nonlinearity 8(2), 131 (1995)

    Article  MathSciNet  Google Scholar 

  3. Butcher, J.C.: Trees and numerical methods for ordinary differential equations. Numerical Algorithms 53(2), 153–170 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  5. Carvalho, A.N., Dlotko, T.: Dynamics of the viscous Cahn-Hilliard equation. J. Math. Anal. Appl. 344(2), 703–725 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chen, H.: Error estimates for the scalar auxiliary variable (SAV) schemes to the viscous Cahn-Hilliard equation with hyperbolic relaxation. J. Math. Anal. Appl. 499(1), 125002 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Research in the Mathematical Sciences 7(3), 1–27 (2020)

  8. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019)

    MathSciNet  Google Scholar 

  10. Chen, W., Wang, S., Wang, X.: Energy stable arbitrary order ETD-MS method for gradient flows with Lipschitz nonlinearity. CSIAM Trans. Appl. Math. 2(3), 460–483 (2021)

    Article  MathSciNet  Google Scholar 

  11. Cholewa, J.W., Dlotko, T., Chafee, N.: Global attractors in abstract parabolic problems, vol. 278. Cambridge University Press (2000)

  12. Chow, K., Ruuth, S.J.: Linearly stabilized schemes for the time integration of stiff nonlinear PDEs. J. Sci. Comput. 87(3), 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  13. Christlieb, A., Promislow, K., Xu, Z.: On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method. Commun. Math. Sci. 11(2), 345–360 (2013)

    Article  MathSciNet  Google Scholar 

  14. Conde, S., Gottlieb, S., Grant, Z.J., Shadid, J.N.: Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order. J. Sci. Comput. 73(2–3), 667–690 (2017)

    Article  MathSciNet  Google Scholar 

  15. Douglas Jr, J., Dupont, T.: Alternating-direction Galerkin methods on rectangles. In: Numerical Solution of Partial Differential Equations–II, pp. 133–214. Elsevier (1971)

  16. Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41(2), B250–B273 (2019)

    Article  MathSciNet  Google Scholar 

  17. Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

    Article  MathSciNet  Google Scholar 

  18. Du, Q., Feng, X.: The phase field method for geometric moving interfaces and their numerical approximations. Handb. Numer. Anal. 21, 425–508 (2020)

    MathSciNet  Google Scholar 

  19. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  20. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  Google Scholar 

  21. Du, Q., Zhu, W.x.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math. 200–209 (2004)

  22. Duchemin, L., Eggers, J.: The explicit-implicit-null method: removing the numerical instability of PDEs. J. Comput. Phys. 263, 37–52 (2014)

    Article  MathSciNet  Google Scholar 

  23. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    Article  MathSciNet  Google Scholar 

  24. Elliott, C.M., Luckhaus, S.: A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. IMA Preprint Series No.887. University of Minnesota (1991)

  25. Elliott, C.M., Stuart, A.M.: Viscous Cahn-Hilliard equation II. Analysis. J. Diff. Eq. 128(2), 387–414 (1996)

    Article  MathSciNet  Google Scholar 

  26. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article, 1998 (1998)

  27. Fife, P.C.: Models for phase separation and their mathematics. Electron. J. Differential Equations 2000(48), 1–26 (2000)

    MathSciNet  Google Scholar 

  28. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models. J. Comput. Phys. 100, 110943 (2022)

    Article  MathSciNet  Google Scholar 

  29. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42(1), B135–B156 (2020)

    Article  MathSciNet  Google Scholar 

  30. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong stability preserving Runge-Kutta and multistep time discretizations. World Sci. (2011)

  31. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  Google Scholar 

  32. Grinfeld, M., Novick-Cohen, A.: The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor. Trans. Am. Math. Soc. 351(6), 2375–2406 (1999)

    Article  MathSciNet  Google Scholar 

  33. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn-Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  34. Huang, J., Shu, C.W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

  35. Hundsdorfer, W.: A note on stability of the Douglas splitting method. Math. Comput. 183–190 (1998)

  36. Isherwood, L., Grant, Z.J., Gottlieb, S.: Strong stability preserving integrating factor Runge-Kutta methods. SIAM J. Numer. Anal. 56(6), 3276–3307 (2018)

    Article  MathSciNet  Google Scholar 

  37. Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Num. Methods Part. Diff. Eq. 1–22 (2021)

  38. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys. 110405 (2021)

  39. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62(2), 431–455 (2015)

    Article  MathSciNet  Google Scholar 

  40. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)

    Article  MathSciNet  Google Scholar 

  41. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203(1), 72–88 (2005)

    Article  MathSciNet  Google Scholar 

  42. Lawson, J.D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967)

    Article  MathSciNet  Google Scholar 

  43. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), A3957–A3978 (2020)

    Article  MathSciNet  Google Scholar 

  44. Li, D.: Effective maximum principles for spectral methods. Ann. Appl. Math. 37(2), 131–290 (2021)

    Article  MathSciNet  Google Scholar 

  45. Li, D.: Why large time-stepping methods for the Cahn-Hilliard equation is stable. Math. Comput. 91(338), 2501–2515 (2022)

    MathSciNet  Google Scholar 

  46. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54(3), 1653–1681 (2016)

    Article  MathSciNet  Google Scholar 

  47. Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint. J. Sci. Comput. 87(3), 1–32 (2021)

    Article  MathSciNet  Google Scholar 

  48. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 43(3), A1780–A1802 (2021)

    Article  MathSciNet  Google Scholar 

  49. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl. 60(6), 1591–1606 (2010)

    Article  MathSciNet  Google Scholar 

  50. Liao, H.l., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second-order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Num. Anal. 58(4), 2294–2314 (2020)

  51. Miranville, A.: The Cahn–Hilliard equation: recent advances and applications. SIAM (2019)

  52. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)

    Article  MathSciNet  Google Scholar 

  53. Novick-Cohen, A.: On the viscous Cahn–Hilliard equation. Material instabilities in continuum mechanics. pp. 329–342. Oxford Sci. Publ., Oxford Univ. Press, New York (1988)

  54. Novick-Cohen, A., Pego, R.L.: Stable patterns in a viscous diffusion equation. Trans. Am. Math. Soc. 324(1), 331–351 (1991)

    Article  MathSciNet  Google Scholar 

  55. Qiao, Z., Sun, Z.Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84(292), 653–674 (2015)

    Article  MathSciNet  Google Scholar 

  56. Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)

    Article  MathSciNet  Google Scholar 

  57. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17(1), 211–220 (2002)

    Article  MathSciNet  Google Scholar 

  58. Schönlieb, C.B., Bertozzi, A.: Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci. 9(2), 413–457 (2011)

    Article  MathSciNet  Google Scholar 

  59. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  60. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  61. Shin, J., Choi, Y., Kim, J.: An unconditionally stable numerical method for the viscous Cahn-Hilliard equation. Discrete Contin. Dyn. Syst. - B. 19(6), 1737 (2014)

    MathSciNet  Google Scholar 

  62. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)

    Article  MathSciNet  Google Scholar 

  63. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  64. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1–3), 439–456 (2003)

    Article  MathSciNet  Google Scholar 

  65. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

    Article  MathSciNet  Google Scholar 

  66. Ström, T.: On logarithmic norms. SIAM J. Numer. Anal. 12(5), 741–753 (1975)

    Article  MathSciNet  Google Scholar 

  67. Sun, X., Ward, M.J.: Dynamics and coarsening of interfaces for the viscous Cahn-Hilliard equation in one spatial dimension. Stud. Appl. Math. 105(3), 203–234 (2000)

    Article  MathSciNet  Google Scholar 

  68. Tang, T., Qiao, Z.: Efficient numerical methods for phase-field equations. Sci. Sin. Math. 50(6), 775 (2020)

    Article  Google Scholar 

  69. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016)

    MathSciNet  Google Scholar 

  70. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, vol. 68. Springer-Verlag, New York (1997)

    Google Scholar 

  71. Thomas, J.W.: Numerical partial differential equations: finite difference methods, vol. 22. Springer Science & Business Media (1995)

  72. Wang, H., Shu, C.W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)

    Article  MathSciNet  Google Scholar 

  73. Weng, Z., Zhai, S., Feng, X.: Analysis of the operator splitting scheme for the Cahn-Hilliard equation with a viscosity term. Numer. Methods Partial Differ. Equ. 35(6), 1949–1970 (2019)

    Article  MathSciNet  Google Scholar 

  74. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44(1), 38–68 (2010)

    Article  MathSciNet  Google Scholar 

  75. Wu, H.: A review on the Cahn-Hilliard equation: classical results and recent advances in dynamic boundary conditions. Electron. Res. Arch. 30(8), 2788–2832 (2022)

    Article  MathSciNet  Google Scholar 

  76. Xiao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen-Cahn type equations. Numer. Methods Partial Differ. Equ. 1–21 (2019)

  77. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  78. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)

    Article  MathSciNet  Google Scholar 

  79. Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily high-order maximum bound preserving schemes with cut-off postprocessing for Allen-Cahn equations. J. Sci. Comput. 90(2), 1–36 (2022)

    Article  MathSciNet  Google Scholar 

  80. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  Google Scholar 

  81. Yin, J.: On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation. J. Differential Equations 97(2), 310–327 (1992)

    Article  MathSciNet  Google Scholar 

  82. Zhai, S., Weng, Z., Yang, Y.: A high order operator splitting method based on spectral deferred correction for the nonlocal viscous Cahn-Hilliard equation. J. Comput. Phys. 446, 110636 (2021)

    Article  MathSciNet  Google Scholar 

  83. Zhang, H., Qian, X., Xia, J., Song, S.: Efficient inequality-preserving integrators for differential equations satisfying forward Euler conditions. ESAIM: Math. Model. Numer. Anal. 57(3), 1619–1655 (2023)

    Article  MathSciNet  Google Scholar 

  84. Zhang, H., Qian, X., Xia, J., Song, S.: Unconditionally maximum-principle-preserving parametric integrating factor two-step Runge-Kutta schemes for parabolic sine-Gordon equations. CSIAM Trans. Appl. Math. 4(1), 177–224 (2023)

    Article  MathSciNet  Google Scholar 

  85. Zhang, H., Yan, J., Qian, X., Chen, X., Song, S.: Explicit third-order unconditionally structure-preserving schemes for conservative Allen-Cahn equations. J. Sci. Comput. 90(8), 1–29 (2022)

    Article  MathSciNet  Google Scholar 

  86. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)

    Article  MathSciNet  Google Scholar 

  87. Zhang, H., Yan, J., Qian, X., Song, S.: Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations. Comput. Methods Appl. Mech. Eng. 393, 114817 (2022)

    Article  MathSciNet  Google Scholar 

  88. Zhang, X., Shu, C.W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)

  89. Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun. Comput. Phys. 11(4), 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (12271523, 12071481), Defense Science Foundation of China (2021-JCJQ-JJ-0538), National Key R &D Program of China (SQ2020YFA0709803), Science & Technology Innovation Program of Hunan Province (2021RC3082, 2022RC1192), and Research fund from College of Science, National University of Defense Technology (2023-lxy-fhjj-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Aihui Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proof of Theorem 2.6

Proof

Consider the Ginzburg–Landau function (10) as an example. For a given \(u^0 \in X\) and \(t_0 > 0\), we denote \(X_{\beta } = \{ v \in X | \Vert v\Vert _{L^\infty } \le \beta \}\) and \(C([0, t_0]; X_{\beta }) = \{v: [0, t_0] \rightarrow X_{\beta } | v \text {~is~continuous}\}\). Note that the forward Euler condition (17) is equivalent to the circle condition,

$$\begin{aligned} \Vert \kappa u + {N}(u)\Vert _{L^\infty } \le \kappa \beta , \quad \forall \kappa \ge \frac{1}{\tilde{\tau }_{FE}}, \forall \Vert u\Vert _{L^\infty } \le \beta . \end{aligned}$$
(69)

Letting \(\kappa \ge \frac{1}{\tilde{\tau }_{FE}}\), for a given \(v \in C([0, t_0]; X_{\beta })\), we define \(w: [0, t_0] \rightarrow X\) as the solution to the system

$$\begin{aligned} \left\{ \begin{aligned} w_t&= {L} w - \kappa w + {N}(v) + \kappa v =: {L}_\kappa w + {N}_\kappa (v), \quad t \in [0, t_0], \\ w(0)&= u^0. \end{aligned}\right. \end{aligned}$$
(70)

Then, w is uniquely defined because of the linearity of (70). By Duhamel’s formula, we have

$$\begin{aligned} w(t) = \text {e}^{{L}_\kappa t} u^0 + \int _0^t \text {e}^{{L}_\kappa (t - s)}{N}_\kappa ( v(s)) \text {d} s, \quad t \in [0, t_0]. \end{aligned}$$
(71)

Taking \(\Vert \cdot \Vert _{L^\infty }\)-norm on both sides of (71) and applying the circle condition (69) yields

$$\begin{aligned} \Vert w(t)\Vert _{L^\infty } \le \text {e}^{-\kappa t} \Vert u^0\Vert _{L^\infty } + \!\int _0^t \text {e}^{-\kappa (t - s)} \Vert {N}_\kappa (v(s))\Vert _{L^\infty } \text {d} s \!\le \! \text {e}^{-\kappa t} \beta + \!\int _0^t \text {e}^{-\kappa (t - s)} \kappa \beta \text {d} s \!=\! \beta , \quad \!t \!\in \! [0, t_0]. \end{aligned}$$

Therefore, \(w \in C([0, t_0]; X_{\beta })\). Next by defining a mapping \({M}: C([0, t_0]; X_{\beta }) \rightarrow C([0, t_0]; X_{\beta })\) as \({M}(v) = w\) through (70), we show that \({M}\) is a contraction for sufficiently small \(t_0\). Assuming that \(v_1, v_2 \in C([0, t_0]; X_{\beta })\), \(w_1 = {M}(v_1)\) and \( w_2 = {M} (v_2)\), we then obtain

$$\begin{aligned} w_1(t) - w_2(t) = \int _0^t \text {e}^{{L}_\kappa (t - s)}[ {N}_\kappa (v_1(s)) - {N}_\kappa (v_2(s))] \text {d} s. \end{aligned}$$

Since \({N}(u)\) satisfies the Lipschitz condition (20), we derive

$$\begin{aligned} \begin{aligned} \Vert {N}_\kappa (v_1(s)) \!-\! {N}_\kappa (v_2(s))\Vert _{L^\infty }&\!\le \! \Vert {N}( v_1(s)) \!-\! {N}(v_2(s))\Vert _{L^\infty } +\! \Vert \kappa v_1(s) - \kappa v_2(s)\Vert _{L^\infty } \\&\le (l_N + \kappa ) \Vert v_1(s) - v_2(s)\Vert _{L^\infty }. \end{aligned} \end{aligned}$$

Noting that \({L} = \frac{\epsilon ^2}{\nu } \Delta \) is the generator of a contraction semigroup with respect to the supremum norm on X [20], then it holds that

$$\begin{aligned} \begin{aligned} \Vert w_1(t) - w_2(t)\Vert _{L^\infty }&\le \int _0^{t} \text {e}^{-\kappa (t - s)} (l_N +\kappa ) \Vert v_1(s) - v_2(s)\Vert _{L^\infty } \text {d} s \\&\le \frac{l_N + \kappa }{\kappa } (1 - \text {e}^{-\kappa t_0})\Vert v_1 - v_2\Vert _{C([0, t_0]; X)}, \quad \forall t \in [0, t_0]. \end{aligned} \end{aligned}$$

If \(t_0 < \frac{1}{\kappa }\ln \frac{l_N + \kappa }{l_N}\), we have \(\frac{l_N + \kappa }{\kappa }(1 - \text {e}^{-\kappa t_0}) < 1\), and

$$\begin{aligned} \Vert {M}(v_1) - {M}(v_2)\Vert _{C([0, t_0]; X)} < \Vert v_1 - v_2\Vert _{C([0, t_0]; X)}, \end{aligned}$$

and then \({M}\) is a contraction. Since \(X_{\beta }\) is closed in X, \(C([0,t_0]; X_{\beta })\) is thus complete with respect to the metric induced by the norm \(\Vert \cdot \Vert _{C([0, t_0]; X)}\), and then Banach’s fixed point theorem gives a unique fixed point \(u \in C([0, t_0]; X_{\beta })\) of \({M}(u) = u\), which is the unique solution to Eq. (8). Continuing the process gives global existence of the unique solution \(u \in C([0, T]; X_{\beta })\). \(\square \)

Appendix 2. Some non-negative RK Butcher tableaux

$$\begin{aligned}{} & {} \mathrm {RK(1, 1):} \begin{array}{c|c} 0 &{} 0 \\ \hline 1 &{} 1 \end{array}, \quad \quad{} & {} \mathrm {RK(2, 2):} \begin{array}{c|cc} 0 &{} 0 &{} 0\\ 1 &{} 1 &{} 0\\ \hline 1 &{} \frac{1}{2} &{} \frac{1}{2} \end{array}, \quad \quad \quad \\ \nonumber{} & {} \text {Forward Euler scheme, {C} = 1}{} & {} \text {Heun's second-order scheme [63], {C} = 1} \end{aligned}$$
(72)
$$\begin{aligned} \begin{aligned}&\quad \begin{array} {c|ccc} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ \frac{1}{2} &{} \frac{1}{4} &{} \frac{1}{4} &{} 0\\ \hline 1 &{} \frac{1}{6} &{} \frac{1}{6} &{} \frac{2}{3} \end{array},&\begin{array}{c|cccc} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{1}{2} &{} \frac{1}{2} &{} 0 &{} 0 &{} 0\\ \frac{1}{2} &{} 0 &{} \frac{1}{2} &{} 0 &{} 0 \\ 1 &{} 0 &{} 0&{} 1 &{} 0 \\ \hline 1 &{} \frac{1}{6} &{} \frac{1}{3}&{} \frac{1}{3} &{} \frac{1}{6} \end{array}, \quad \quad \quad \quad \\&\text {RK(3,3) [63], {C} = 1} \quad \quad&\text {RK(4, 4)}, {C} = 0 \quad \quad \quad \quad \end{aligned} \end{aligned}$$
(73)

RK(5, 4)[65], \({C} \approx 1.508\), \(c \approx [0, 0.3918, 0.5861, 0.4745, 0.9350]^T\):

$$\begin{aligned} \left\{ \begin{aligned} u_{n, 1}&= u_{n, 0} + 0.391752226571890 \tau g(u_{n, 0}), \\ u_{n, 2}&= 0.444370493651235 u_{n, 0} + 0.555629506348765 u_{n, 1} + 0.368410593050371 \tau g(u_{n, 1}), \\ u_{n, 3}&= 0.620101851488403 u_{n, 0} + 0.379898148511597u_{n, 2} + 0.251891774271694 \tau g(u_{n, 2}), \\ u_{n, 4}&= 0.178079954393132 u_{n, 0} + 0.821920045606868 u_{n, 3} + 0.544974750228521 \tau g(u_{n, 3}), \\ u^{n+1}&= 0.517231671970585 u_{n, 2} + 0.096059710526147 u_{n, 3} + 0.063692468666290 \tau g(u_{n, 3}) \\&\quad + 0.386708617503268 u_{n, 4} + 0.226007483236906 \tau g(u_{n, 4}). \end{aligned}\right. \end{aligned}$$
(74)

Appendix 3. Third- and fourth-order RK Butcher tableaux with non-decreasing parametric abscissas

RK\(^+(3, 3)\) [36], \({C} = \frac{3}{4}\), \(c = [0, \frac{2}{3}, \frac{2}{3}]^T\):

$$\begin{aligned} \left\{ \begin{aligned} u_{n, 1}&= u_{n, 0} + \frac{2}{3}\tau g(u_{n, 0}), \\ u_{n, 2}&= \frac{2}{3} u_{n, 0} + \frac{1}{3}[u_{n, 1} + \frac{4}{3} \tau g(u_{n, 1})], \\ u_{n, 3}&= \frac{59}{128} u_{n, 0} + \frac{15}{128}[u_{n, 0} + \frac{4}{3} \tau g(u_{n, 0})] + \frac{27}{64}[u_{n, 2} + \frac{4}{3} \tau g(u_{n, 2})]. \end{aligned} \right. \end{aligned}$$

RK\(^+(5, 4)\)[36], \({C} \!=\! 1.346586417284006\), \(c \approx \! [0, 0.4549, 0.5165, 0.5165, 0.9903]^T\):

$$\begin{aligned} \left\{ \begin{aligned} u_{n, 1}&= 0.387392167970373 u_{n, 0} + 0.612607832029627[ u_{n, 0} + \frac{\tau }{{C}} g(u_{n, 0})], \\ u_{n, 2}&= 0.568702484115635 u_{n, 0} + 0.431297515884365[ u_{n, 1} + \frac{\tau }{{C}} g(u_{n, 1})], \\ u_{n, 3}&= 0.589791736452092 u_{n, 0} + 0.410208263547908[u_{n, 2} + \frac{\tau }{{C}} g(u_{n, 2})], \\ u_{n, 4}&= 0.213474206786188 u_{n, 0} + 0.786525793213812[u_{n, 3} + \frac{\tau }{{C}} g(u_{n, 3})], \\ u^{n+1}&= 0.270147144537063 u_{n, 0} + 0.029337521506634[u_{n, 0} + \frac{\tau }{{C}} g(u_{n, 0})] \\&\quad + 0.239419175840559[u_{n, 1} + \frac{\tau }{{C}} g(u_{n, 1})] + 0.227000995504038[ u_{n, 3} \\&\quad + \frac{\tau }{{C}} g(u_{n, 3})] + 0.234095162611706[u_{n, 4} + \frac{\tau }{{C}} g(u_{n, 4})]. \end{aligned} \right. \end{aligned}$$
(75)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, G., Liu, Z. et al. On the maximum principle and high-order, delay-free integrators for the viscous Cahn–Hilliard equation. Adv Comput Math 50, 41 (2024). https://doi.org/10.1007/s10444-024-10143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10143-6

Keywords

Mathematics Subject Classification (2010)

Navigation