Skip to main content
Log in

Weak Galerkin finite element methods for semilinear Klein–Gordon equation on polygonal meshes

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The article presents the development of the weak Galerkin finite element method (WG-FEM) for semilinear hyperbolic problems. Semidiscrete error estimate in \(L^2\)-norm as well as \(H^1\)-norm have been executed for the weak Galerkin space \(({\textbf{P}}_k ({\mathcal {K}}), {\textbf{P}}_{k} (\partial {\mathcal {K}}), [{\textbf{P}}_{k-1} ({\mathcal {K}})]^2),\) where \(k \ge 1\) is an integer. For a fully discrete scheme, we employ the Newmark scheme for temporal discretization. Finally, a few numerical results are provided to validate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ablowitz MJ, Kruskal MD, Ladik JF (1979) Solitary wave collisions. SIAM J Appl Math 36:428–437

    Article  MathSciNet  Google Scholar 

  • Adak D, Natarajan E, Kumar S (2019) Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int J Comput Math 96:971–991

    Article  MathSciNet  Google Scholar 

  • Adams R, Fournier J (2003) Sobolev spaces, sec. Academic Press, Amsterdam

    Google Scholar 

  • Ashyralyev A, Sirma A (2009) A note on the numerical solution of the semilinear Schrödinger equation. Nonlinear Anal Theory Methods Appl 71(12):2507–2516

    Article  Google Scholar 

  • Chen CM, Larsson S, Zhang NY (1989) Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J Numer Anal 9(4):507–524

    Article  MathSciNet  Google Scholar 

  • Chen L, Wang J, Ye X (2014) A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J Sci Comput 59:496–511

    Article  MathSciNet  Google Scholar 

  • Chrysafinos K, Hou LS (2002) Error estimates for the semidiscrete finite element method approximations of linear and semilinear parabolic equations. SIAM J Numer Anal 40:282–306

    Article  MathSciNet  Google Scholar 

  • Deka B, Kumar N (2023) A systematic study on weak Galerkin finite element method for second order parabolic problems. Numer Methods PDE 39:2444–2474

    Article  MathSciNet  Google Scholar 

  • Deka B, Roy P (2019) Weak Galerkin finite element methods for parabolic interface problems with nonhomogeneous jump conditions. Numer Funct Anal Optim 40:259–279

    Article  MathSciNet  Google Scholar 

  • Feistauer M, Sobotikova V (1990) Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Model Math Anal Numer 24(4):457–500

    Article  MathSciNet  Google Scholar 

  • Han H, Zhang Z (2008) Split local absorbing conditions for one-dimensional nonlinear Klein–Gordon equation on unbounded domain. J Comput Phys 227:8992–9004

    Article  MathSciNet  Google Scholar 

  • Hu X, Mu L, Ye X (2019) A weak Galerkin finite element method for the Navier–Stokes equations. J Comput Appl Math 362:614–625

    Article  MathSciNet  Google Scholar 

  • Huang Y, Li J, Li D (2017) Developing weak Galerkin finite element methods for the wave equation. Numer Methods Partial Differ Equ 33:868–884

    Article  MathSciNet  Google Scholar 

  • Irk D, Kirli E, Gorgulu MZ (2022) A high order accurate numerical solution of the Klein–Gordon equation. Appl Math Inf Sci 16:331–339

    Google Scholar 

  • Kim S, Lim H (2007) High order schemes for acoustic waveform simulation. Appl Numer Math 57:402–414

    Article  MathSciNet  Google Scholar 

  • Kirby RC, Kieu, TT (2013) Galerkin finite element methods for nonlinear Klein–Gordon equations. Math Comput 189(4)

  • Lehrenfeld C (2010) Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diploma Thesis, MathCCES/IGPM, RWTH Aachen

  • Li J, Chen Y-T (2008) Computational partial differential equations using MATLAB. Chapman and Hall/CRC Press, London

    Book  Google Scholar 

  • Li B, Sun W (2013) Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J Numer Anal 51:1959–1977

    Article  MathSciNet  Google Scholar 

  • Li QH, Wang J (2013) Weak Galerkin finite element methods for parabolic equations. Numer Methods Partial Differ Equ 29:2004–2024

    Article  MathSciNet  Google Scholar 

  • Li H, Mu L, Ye X (2018) Interior energy error estimates for the weak Galerkin finite element method. Numer Math 139:447–478

    Article  MathSciNet  Google Scholar 

  • Li D, Nie Y, Wang C (2019) Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions. Comput Math Appl 78:905–928

    Article  MathSciNet  Google Scholar 

  • Li D, Wang C, Wang J (2020) Superconvergence of the gradient approximation for weak Galerkin finite element methods on nonuniform rectangular partitions. Appl Numer Math 150:396–417

    Article  MathSciNet  Google Scholar 

  • Li D, Wang C, Wang J (2022) A primal-dual finite element method for transport equations in nondivergence form. J Comput Appl Math 412:114313

    Article  Google Scholar 

  • Lin G, Liu J, Sadre-Marandi F (2015) A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods. J Comput Appl Math 273:346–362

    Article  MathSciNet  Google Scholar 

  • Lin R, Ye X, Zhang S, Zhu P (2018) A weak Galerkin finite element method for singularly perturbed convection–diffusion–reaction problems. SIAM J Numer Anal 56:1482–1497

    Article  MathSciNet  Google Scholar 

  • Lipo D, Paye KR, Popivanov NI (2014) On the degenerate hyperbolic Goursat problem for linear and nonlinear equation of Tricomi type. Nonlinear Anal Theory Methods Appl 108:29–56

    Article  MathSciNet  Google Scholar 

  • Liu Y, Nie Y (2021) A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems. Comput Math Appl 99:73–83

    Article  MathSciNet  Google Scholar 

  • Liu X, Li J, Chen Z (2018a) A weak Galerkin finite element method for the Navier–Stokes equations. J Comput Appl Math 333:442–457

  • Liu J, Tavener S, Wang Z (2018b) Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J Sci Comput 40:B1229–B1252

  • Liu J, Tavener S, Wang Z (2020) Penalty-free any-order weak Galerkin FEMs for elliptic problems on quadrilateral meshes. J Sci Comput 83:47

    Article  MathSciNet  Google Scholar 

  • Liu Y, Guan Z, Nie Y (2022) Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations. Adv Comput Math 48:47

    Article  MathSciNet  Google Scholar 

  • Mu L, Chen Z (2021) A new WENO weak Galerkin finite element method for time dependent hyperbolic equations. Appl Numer Math 159:106–124

    Article  MathSciNet  Google Scholar 

  • Mu L, Wang J, Ye X (2015a) Weak Galerkin finite element methods on polytopal meshes. Int J Numer Anal Model 12:31–53

  • Mu L, Wang J, Xiu Y, Zhang S (2015b) A weak Galerkin finite element method for the Maxwell equations. J Sci Comput 65:363–386

  • Mu L, Wang J, Ye X (2017) A least-squares-based weak Galerkin finite element method for second order elliptic equations. SIAM J Sci Comput 39:A1531–A1557

    Article  MathSciNet  Google Scholar 

  • Shields S, Li J, Machorro E (2017) Weak Galerkin methods for time-dependent Maxwell’s equations. Comput Math Appl 74:2106–2124

    Article  MathSciNet  Google Scholar 

  • Sinha R, Deka B (2009) Finite element methods for semilinear elliptic and parabolic interface problems. Appl Numer Math 59:1870–1883

    Article  MathSciNet  Google Scholar 

  • Sun S, Huang Z, Wang C (2018) Weak Galerkin finite element method for a class of quasilinear elliptic problems. Appl Math Lett 79:67–72

    Article  MathSciNet  Google Scholar 

  • Thomée V (2007) Galerkin finite element methods for parabolic problems, 2nd edn. Springer Science & Business Media, Berlin

    Google Scholar 

  • Wang C, Wang J (2018) A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form. Math Comput 87:515–545

    Article  MathSciNet  Google Scholar 

  • Wang J, Ye X (2013) A weak Galerkin finite element method for second order elliptic problems. J Comput Appl Math 241:103–115

    Article  MathSciNet  Google Scholar 

  • Wang J, Ye X (2014) A weak Galerkin mixed finite element method for second order elliptic problems. Math Comput 83:2101–2126

    Article  MathSciNet  Google Scholar 

  • Wang J, Wang R, Zhai Q, Zhang R (2018) A systematic study on weak Galerkin finite element methods for second order elliptic problems. J Sci Comput 74:1369–1396

    Article  MathSciNet  Google Scholar 

  • Wang X, Gao F, Sun Z (2020) Weak Galerkin finite element method for viscoelastic wave equations. J Comput Appl Math 375:112816

    Article  MathSciNet  Google Scholar 

  • Wheeler MF (1973) A priori \(L^{2}\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J Numer Anal 10:723–759

    Article  MathSciNet  Google Scholar 

  • Yang L (2006) Numerical studies of the Klein–Gordon–Schrödinger equations. Master’s Thesis, National University Singapore, Singapore

  • Yang H (2018) High-order energy and linear momentum conserving methods for the Klein-Gordon equation. Mathematics 6(10):200

    Article  Google Scholar 

  • Yin F, Tian T, Song J, Zhu M (2015) Spectral methods using Legendre wavelets for nonlinear Klein/Sine-Gordon equations. J Comput Appl Math 275:321–334

    Article  MathSciNet  Google Scholar 

  • Zenisek A (1990) The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer Math 58:51–77

    Article  MathSciNet  Google Scholar 

  • Zhang T (2018) A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int J Comput Methods 15:1850075

    Article  MathSciNet  Google Scholar 

  • Zhang T, Chen Y (2019) An analysis of the weak Galerkin finite element method for convection–diffusion equation. Appl Math Comput 346:612–621

    MathSciNet  Google Scholar 

  • Zhang H, Zou Y, Xu Y, Zhai Q, Yue H (2016) Weak Galerkin finite element method for second order parabolic equations. Int J Numer Anal Model 13:525–544

    MathSciNet  Google Scholar 

  • Zhou S, Gao F, Li B, Sun Z (2019) Weak Galerkin finite element method with second-order accuracy in time for parabolic problems. Appl Math Lett 90:118–123

    Article  MathSciNet  Google Scholar 

  • Zlamal M (1980) A finite element solution of the nonlinear heat equation. RAIRO Anal Numer 14:203–216

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupen Deka.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, P., Kumar, N. & Deka, B. Weak Galerkin finite element methods for semilinear Klein–Gordon equation on polygonal meshes. Comp. Appl. Math. 43, 218 (2024). https://doi.org/10.1007/s40314-024-02745-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02745-z

Keywords

Mathematics Subject Classification

Navigation