Skip to main content
Log in

Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low-Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low-Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, Phys. Rev. A 65, 022304 (2002).

    Article  ADS  Google Scholar 

  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    Article  ADS  Google Scholar 

  6. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    Article  ADS  Google Scholar 

  7. X. F. Zou, and D. W. Qiu, Sci. China-Phys. Mech. Astron. 57, 1696 (2014).

    Article  ADS  Google Scholar 

  8. Y. Chang, C. Xu, S. Zhang, and L. Yan, Sci. Bull 59, 2541 (2014).

    Article  Google Scholar 

  9. C. Zheng, and G. F. Long, Sci. China-Phys. Mech. Astron. 57, 1238 (2014).

    Article  ADS  Google Scholar 

  10. P. Yadav, R. Srikanth, and A. Pathak, Quantum. Inf. Process. 13, 2731 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Hassanpour, and M. Houshmand, Quantum. Inf. Process. 14, 739 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).

    Article  ADS  Google Scholar 

  13. S. Bose, V. Vderal, and P. L. Knilight, Phys. Rev. A 60, 60 (1999).

    Article  Google Scholar 

  14. B. S. Shi, Y. K. Jiang, and G. C. Guo, Phys. Rev. A 62, 054301 (2000).

    Article  ADS  Google Scholar 

  15. C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, Sci. Bull 60, 2016 (2015).

    Article  Google Scholar 

  16. W. Maimaiti, Z. Li, S. Chesi, and Y. D. Wang, Sci. China-Phys. Mech. Astron. 58, 050309 (2015).

    Article  Google Scholar 

  17. Z. Zhao, J. W. Pan, and M. S. Zhan, Phys. Rev. A 64, 014301 (2001).

    Article  ADS  Google Scholar 

  18. T. Yamamoto, M. Koashi, and N. Imoto, Phys. Rev. A 64, 012304 (2001).

    Article  ADS  Google Scholar 

  19. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Phys. Rev. A 77, 062305 (2008).

    Article  ADS  Google Scholar 

  20. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Phys. Rev. A 85, 012307 (2012).

    Article  ADS  Google Scholar 

  21. F. G. Deng, Phys. Rev. A 85, 022311 (2012).

    Article  ADS  Google Scholar 

  22. B. C. Ren, F. F. Du, and F. G. Deng, Phys. Rev. A 88, 012302 (2013).

    Article  ADS  Google Scholar 

  23. B. C. Ren, and F. G. Deng, Laser Phys. Lett. 10, 115201 (2013).

    Article  ADS  Google Scholar 

  24. B. C. Ren, and G. L. Long, Opt. Express 22, 6547 (2014).

    Article  ADS  Google Scholar 

  25. X. H. Li, and S. Ghose, Opt. Express 23, 3550 (2015).

    Article  ADS  Google Scholar 

  26. C. Cao, T. J.Wang, S. C. Mi, R. Zhang, and C. Wang, Ann. Phys. 369, 128 (2016).

    Article  ADS  Google Scholar 

  27. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, Sci. Bull. 60, 96 (2015).

    Article  Google Scholar 

  28. J. S. Xu, and C. F. Li, Sci. Bull. 60, 141 (2015).

    Article  Google Scholar 

  29. H. F. Wang, S. Zhang, and K. H. Yeon, Eur. Phys. J. D 56, 271 (2010).

    Article  ADS  Google Scholar 

  30. H. F. Wang, S. Zhang, and K. H. Yeon, J. Opt. Soc. Am. B 27, 2159 (2010).

    Article  ADS  Google Scholar 

  31. W. Xiong, and L. Ye, J. Opt. Soc. Am. B 28, 2030 (2011).

    Article  ADS  Google Scholar 

  32. L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, J. Opt. Soc. Am. B 29, 630 (2012).

    Article  ADS  Google Scholar 

  33. T. J. Wang, and G. L. Long, J. Opt. Soc. Am. B 30, 1069 (2013).

    Article  ADS  Google Scholar 

  34. Y. B. Sheng, L. Zhou, and S. M. Zhao, Phys. Rev. A 85, 042302 (2012).

    Article  ADS  Google Scholar 

  35. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Sci. China-Phys. Mech. Astron. 58, 060301 (2015).

    Article  Google Scholar 

  36. B. Gu, J. Opt. Soc. Am. B 29, 1685 (2012).

  37. B. Gu, D. H. Quan, and S. R. Xiao, Int. J. Theor. Phys. 51, 2966 (2012).

    Article  Google Scholar 

  38. F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, J. Opt. Soc. Am. B 29, 1399 (2012).

    Article  ADS  Google Scholar 

  39. F. F. Du, and F. G. Deng, Laser Phys. Lett. 12, 115202 (2015).

    Article  ADS  Google Scholar 

  40. F. F. Du, and F. G. Deng, Sci. China-Phys. Mech. Astron. 58, 040303 (2015).

    Google Scholar 

  41. L. M. Duan, and H. J. Kimble, Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  42. J. Cho, and H. W. Lee, Phys. Rev. Lett. 95, 160501 (2005).

    Article  ADS  Google Scholar 

  43. C. Y. Hu, A. Young, J. L. Obrien, W. J. Munro, and J. G. Rarity, Phys. Rev. B 78, 085307 (2008).

    Article  ADS  Google Scholar 

  44. T. J. Wang, S. Y. Song, and G. L. Long, Phys. Rev. A 85, 062311 (2012).

    Article  ADS  Google Scholar 

  45. T. J. Wang, C. Cao, and C. Wang, Sci. China-Inf. Sci. 56, 122401 (2013).

    Google Scholar 

  46. Q. Chen, and M. Feng, Phys. Rev. A 82, 052329 (2010).

    Article  ADS  Google Scholar 

  47. C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, Opt. Express 22, 1551 (2014).

    Article  ADS  Google Scholar 

  48. C. Cao, T. J. Wang, R. Zhang, and C. Wang, Laser Phys. Lett. 12, 036001 (2015).

    Article  ADS  Google Scholar 

  49. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, Science 319, 1062 (2008).

    Article  ADS  Google Scholar 

  50. J. H. An, M. Feng, and C. H. Oh, Phys. Rev. A 79, 032303 (2009).

    Article  ADS  Google Scholar 

  51. Q. Chen, and M. Feng, Phys. Rev. A 79, 064304 (2009).

    Article  ADS  Google Scholar 

  52. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, Phys. Rev. A 71, 044302 (2005).

    Article  ADS  Google Scholar 

  53. Z. L. Cao, L. H. Zhang, and M. Yang, Phys. Rev. A 73, 014303 (2006).

    Article  ADS  Google Scholar 

  54. C. D. Ogden, M. Paternostro, and M. S. Kim, Phys. Rev. A 75, 042325 (2007).

    Article  ADS  Google Scholar 

  55. H. F.Wang, and S. Zhang, Int. J. Theor. Phys. 48, 1678 (2009).

    Article  Google Scholar 

  56. C. Cao, C. Wang, L. Y. He, and R. Zhang, Opt. Express 21, 4093 (2013).

    Article  ADS  Google Scholar 

  57. C. Cao, C.Wang, L. Y. He, X. Tong, M. Lei, and R. Zhang, J. Opt. Soc. Am. B 30, 2136 (2013).

  58. C. Wang, Y. Zhang, and G. S. Jin, Phys. Rev. A 84, 032307 (2011).

    Article  ADS  Google Scholar 

  59. C. Wang, Phys. Rev. A 86, 012323 (2012).

    Article  ADS  Google Scholar 

  60. Y. B. Sheng, L. Zhou, L. Wang, and S.M. Zhao, Quantum Inf. Process. 12, 1885 (2013).

    Article  ADS  Google Scholar 

  61. C. Wang, C. Cao, L. Y. He, and C. L. Zhang, Quantum Inf. Process. 13, 1025 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  62. C. Wang, Y. Zhang, M. Lei, G. S. Jin, H. Q. Ma, and R. Zhang, Quantum Inf. Comput. 14, 0107 (2014).

    MathSciNet  Google Scholar 

  63. C. Cao, H. Ding, Y. Li, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Quantum Inf. Process. 14, 1265 (2015).

    Article  ADS  Google Scholar 

  64. Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, Phys. Rev. A 86, 034305 (2012).

    Article  ADS  Google Scholar 

  65. T. Li, G. J. Yang, and F. G. Deng, Opt. Express 22, 23897 (2014).

    Article  ADS  Google Scholar 

  66. G. Y. Wang, T. Li, and F. G. Deng, Quantum Inf. Process. 14, 1305 (2015).

    Article  ADS  Google Scholar 

  67. H. F. Wang, L. L. Sun, S. Zhang, and K. H. Yeon, Quantum Inf. Process. 11, 431 (2012).

    Article  Google Scholar 

  68. R. Zhang, S. H. Zhou, and C. Cao, Sci. China-Phys. Mech. Astron. 57, 1511 (2014).

    Article  ADS  Google Scholar 

  69. M. X. Luo, H. R. Li, and X. Wang, Eur. Phys. J. D 68, 190 (2014).

    Article  ADS  Google Scholar 

  70. L. Y. He, C. Cao, and C. Wang, Opt. Commu. 298, 260 (2013).

    Article  ADS  Google Scholar 

  71. C. Cao, T. J. Wang, R. Zhang, and C. Wang, J. Opt. Soc. Am. B 32, 1524 (2015).

    Article  ADS  Google Scholar 

  72. L. Zhou, and Y. B. Sheng, Phys. Rev. A 90, 024301 (2014).

    Article  ADS  Google Scholar 

  73. L. Zhou, and Y. B. Sheng, Phys. Rev. A 92, 042314 (2015).

    Article  ADS  Google Scholar 

  74. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, Phys. Rev. A 69, 051804(R) (2004).

    Article  ADS  Google Scholar 

  75. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. S. Kaler, and R. Blatt, Phys. Rev. Lett. 89, 103001 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Zhang or Chuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Chen, X., Duan, Y. et al. Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59, 100315 (2016). https://doi.org/10.1007/s11433-016-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0253-x

Keywords

Navigation