Skip to main content
Log in

Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangledW state using cavity input-output process

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We present an efficient two-step entanglement concentration protocol (ECP) for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state, using the coherent state input-output process in low-Q cavity quantum electrodynamics system. In each step of the new proposed protocol, one of the three remote users prepares the auxiliary coherent optical pulses to perform cavity input-output process and then utilizes the standard homodyne measurement to discriminate the final outgoing coherent states. When both of the two steps are successful, remote parties can deterministically concentrate the less-entangled W state atoms to a standard maximally entangled W state. Compared with previous ECPs for W state, this protocol has some advantages and can be widely used in current quantum repeater and some quantum information processing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  6. Grudka A, Wójcik A. Symmetric scheme for superdense coding between multiparties. Phys Rev A, 2002, 66: 014301

    Article  ADS  Google Scholar 

  7. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  8. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  9. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  10. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  11. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  12. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantumsecret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  13. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  14. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  15. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  16. Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81: 5932–5935

    Article  ADS  Google Scholar 

  17. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  ADS  Google Scholar 

  18. Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046–2052

    Article  ADS  Google Scholar 

  19. Bose S, Vedral V, Knight P L. Purification via entanglement swapping and conserved entanglement. Phys Rev A, 1999, 60: 194–197

    Article  ADS  Google Scholar 

  20. Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301

    Article  ADS  Google Scholar 

  21. Yamamoto T, Koashi M, Imoto N. Concentration and purification scheme for two partially entangled photon pairs. Phys Rev A, 2001, 64: 012304

    Article  ADS  Google Scholar 

  22. Zhao Z, Pan J W, Zhan M S. Practical scheme for entanglement concentration. Phys Rev A, 2001, 64: 014301

    Article  ADS  Google Scholar 

  23. Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325

    Article  ADS  Google Scholar 

  24. Sheng Y B, Deng F G, Zhou H Y. Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf Comput, 2010, 10: 272–281

    MATH  MathSciNet  Google Scholar 

  25. Wang C, Zhang Y, Jin G S. Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf Comput, 2011, 11: 988–1002

    MATH  MathSciNet  Google Scholar 

  26. Wang C, Zhang Y, Jin G S. Dicke state generation using cross-Kerr nonlinearity. J Mod Opt, 2011, 58: 21–25

    Article  ADS  MATH  Google Scholar 

  27. Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307

    Article  ADS  Google Scholar 

  28. Deng F G. Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys Rev A, 2012, 85: 022311

    Article  ADS  Google Scholar 

  29. Feng X L, Kwek L C, Oh C H. Electronic entanglement purification scheme enhanced by charge detections. Phys Rev A, 2005, 71: 064301

    Article  ADS  Google Scholar 

  30. Sheng Y B, Deng F G, Zhou H Y. Efficient polarization entanglement concentration for electrons with charge detection. Phys Lett A, 2009, 373, 1823–1825

    Article  ADS  MATH  Google Scholar 

  31. Yang M, Zhao Y, Song W, et al. Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys Rev A, 2005, 71: 044302

    Article  ADS  Google Scholar 

  32. Cao Z L, Zhang L H, Yang M. Concentration for unknown atomic entangled states via cavity decay. Phys Rev A, 2006, 73: 014303

    Article  ADS  Google Scholar 

  33. Ogden C D, Paternostro M, Kim M S. Concentration and purification of entanglement for qubit systems with ancillary cavity fields. Phys Rev A, 2007, 75: 042325

    Article  ADS  Google Scholar 

  34. Cao C, Wang C, He L Y, et al. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt Express, 2013, 21: 4093–4105

    Article  ADS  Google Scholar 

  35. Yang M, Song W, Cao Z L. Entanglement purification for arbitrary unknown ionic states via linear optics. Phys Rev A, 2005, 71: 012308

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang C, Zhang Y, Jin G S. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys Rev A, 2011, 84: 032307

    Article  ADS  Google Scholar 

  37. Wang C, Zhang Y, Jin G S. Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system. Opt Express, 2011, 19: 25685–25695

    Article  ADS  Google Scholar 

  38. Wang C. Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys Rev A, 2012, 86: 012323

    Article  ADS  Google Scholar 

  39. Sheng Y B, Zhou L, Wang L, et al. Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf Process, 2013, 12: 1885–1895

    Article  ADS  MATH  Google Scholar 

  40. Wang C. Nonlocal entanglement analysis using quantum dot and microcavity coupled system. J Mod Opt, 2012, 59: 962–966

    Article  ADS  Google Scholar 

  41. Wang C, Zhang Y, Jin G S, et al. Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators. J Opt Soc Am B, 2012, 29: 3349–3354

    Article  ADS  Google Scholar 

  42. Cao Z L, Yang M. Entanglement distillation for three-particle W class states. J Phys B, 2003, 36: 4245

    Article  ADS  Google Scholar 

  43. Zhang L H, Yang M, Cao Z L. Entanglement concentration for unknown W class states. Phys A, 2007, 374: 611–616

    Article  Google Scholar 

  44. Wang H F, Zhang S, Yeon K H. Linear optical scheme for entanglement concentration of two partially entangled three-photon W states. Eur Phys J D, 2010, 56: 271–275

    Article  ADS  Google Scholar 

  45. Wang H F, Zhang S, Yeon K H. Linear-optics-based entanglement concentration of unknown partially entangled three-photon Wstates. J Opt Soc Am B, 2010, 27: 2159–2164

    Article  ADS  Google Scholar 

  46. Gu B. Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J Opt Soc Am B, 2012, 29: 1685–1689

    Article  ADS  Google Scholar 

  47. Xiong W, Ye L. Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J Opt Soc Am B, 2011, 28: 2030–2037

    Article  ADS  Google Scholar 

  48. Sun L L, Wang H F, Zhang S, et al. Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity. J Opt Soc Am B, 2012, 29: 630–634

    Article  ADS  Google Scholar 

  49. Du F F, Li T, Ren B C, et al. Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled Wstate with weak cross-Kerr nonlinearity. J Opt Soc Am B, 2012, 29: 1399–1405

    Article  ADS  Google Scholar 

  50. Sheng Y B, Zhou L, Zhao S M. Efficient two-step entanglement concentration for arbitrary W states. Phys Rev A, 2012, 85: 042302

    Article  ADS  Google Scholar 

  51. An J H, Feng M, Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys Rev A, 2009, 79: 032303

    Article  ADS  Google Scholar 

  52. Chen Q, Feng M. Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys Rev A, 2009, 79: 064304

    Article  ADS  Google Scholar 

  53. Wei H, Deng Z, Zhang X, et al. Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys Rev A, 2007, 76: 054304

    Article  ADS  Google Scholar 

  54. Chen Q, Feng M. Quantum-information processing in decoherencefree subspace with low-Q cavities. Phys Rev A, 2010, 82: 052329

    Article  ADS  Google Scholar 

  55. Chen J J, An J H, Feng M, et al. Teleportation of an arbitrary multipartite state via photonic Faraday rotation. J Phys B, 2010, 43: 095505

    Article  ADS  Google Scholar 

  56. Bastos W P, Cardoso W B, Avelar A T, et al. Controlled teleportation via photonic Faraday rotations in low-Q cabities. Quantum Inf Process, 2012, 11: 1867–1881

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Peng Z H, Zou J, Liu X J, et al. Teleportation of atomic and photonic states in low-Q cavity QED. Opt Commun, 2012, 285: 5558–5563

    Article  ADS  Google Scholar 

  58. Bastos W P, Cardoso W B, Avelar A T, et al. A note on entanglement swapping of atomic states through the photonic Faraday Rrotation. Quantum Inf Process, 2011, 10: 395–404

    Article  MATH  MathSciNet  Google Scholar 

  59. Peng Z H, Zou J, Liu X J, et al. Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys Rev A, 2012, 86: 034305

    Article  ADS  Google Scholar 

  60. Mei F, Yu Y F, Feng X L, et al. Quantum entanglement distribution with hybrid parity gate. Phys Rev A, 2010, 82: 052315

    Article  ADS  Google Scholar 

  61. Su S L, Guo Q, Zhu L, et al. Atomic quantum information processing in low-Q cavity in the intermediate coupling region. J Opt Soc Am B, 2012, 29: 2827–2833

    Article  ADS  Google Scholar 

  62. Nuβmann S, Hijlkema M, Weber B, et al. Submicron positioning of single atoms in a microcavity. Phys Rev Lett, 2005, 95: 173602

    Article  ADS  Google Scholar 

  63. Fortier K M, Kim S Y, Gibbons M J, et al. Deterministic loading of individual atoms to a high-finesse optical cavity. Phys Rev Lett, 2007, 98: 233601

    Article  ADS  Google Scholar 

  64. Colombe Y, Steinmetz T, Dubois G, et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature, 2007, 450: 272–276

    Article  ADS  Google Scholar 

  65. Sauer J A, Fortier K M, Chang M S, et al. Cavity QED with optically transported atoms. Phys Rev A, 2004, 69: 051804

    Article  ADS  Google Scholar 

  66. Mundt A B, Kreuter A, Becher C, et al. Coupling a single atomic quantum bit to a high finesse optical cavity. Phys Rev Lett, 2002, 89: 103001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhou, S. & Cao, C. Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangledW state using cavity input-output process. Sci. China Phys. Mech. Astron. 57, 1511–1518 (2014). https://doi.org/10.1007/s11433-013-5308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5308-x

Keywords

Navigation