Skip to main content
Log in

Design of graded two-phase microstructures for tailored elasticity gradients

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Being one of new generation of composites, functionally graded materials (FGMs) possess gradually changed physical properties due to their compositional and/or microstructural gradients. In literature, exhaustive studies have been carried out in compositional modeling and design, while limited reports are available for microstructural optimization. This article presents an inverse homogenization method for the design of two-phase (solid/void) FGM microstructures, whose periodic base cells (PBCs) vary in a direction parallel to the property gradient but periodically repeat themselves in the perpendicular direction. The effective elasticity tensor at each PBC is estimated in terms of the homogenization theory. The overall difference between the effective tensor and their target is minimized by seeking for an optimal PBC material topology. To preserve the connectivity between adjacent PBCs, three methods, namely connective constraint, pseudo load, and unified formulation with nonlinear diffusion are proposed herein. A number of two-dimensional examples possessing graded volume fraction and Young’s modulus but constant positive or negative Poisson’s ratios are presented to demonstrate this computational design procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Niion M, Maeda S (1990) J Iron Steel Inst Jpn 30:699

    Article  Google Scholar 

  2. Miyamoto Y (1999) Functionally graded materials: design, processing and applications. Kluwer Academic Publishers, Boston, London

    Book  Google Scholar 

  3. Paul W (2001) 21st Century manufacturing. Prentice-Hall Inc., New Jersey

    Google Scholar 

  4. Amada S, Untao S (2001) Compos B Eng 32:449

    Article  Google Scholar 

  5. Nogata F, Takahashi H (1995) Compos Eng 5:743

    Article  Google Scholar 

  6. Silva ECN, Walters MC, Paulino GH (2006) J Mater Sci 41:6991. doi:https://doi.org/10.1007/s10853-006-0232-3

    Article  CAS  Google Scholar 

  7. Ray AK, Das SK, Mondal S, Ramachandrarao P (2004) J Mater Sci 39:1055. doi:https://doi.org/10.1023/B:JMSC.0000012943.27090.8f

    Article  CAS  Google Scholar 

  8. Bendsøe MP, Sigmund O (2003) Topology, optimisation: theory, methods, and applications. Springer, Berlin, New York

    Google Scholar 

  9. Sigmund O (1994) Int J Solids Struct 31:2313. doi:https://doi.org/10.1016/0020-7683(94)90154-6

    Article  Google Scholar 

  10. Sigmund O (1994) Design of material structures using topology optimization. Technical University of Denmark

  11. Bensoussan A, Papanicolaou G, Lions JL (1978) Asymptotic analysis for periodic structures. North Holland Pub Co., Amsterdam

    Google Scholar 

  12. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer-Verlag, Berlin

    Google Scholar 

  13. Sigmund O, Torquato S (1996) Appl Phys Lett 69:3203. doi:https://doi.org/10.1063/1.117961

    Article  CAS  Google Scholar 

  14. Zhou SW, Li Q (2007) J Phys D Appl Phys 40:6083. doi:https://doi.org/10.1088/0022-3727/40/19/048

    Article  CAS  Google Scholar 

  15. Zhou SW, Li Q (2008) J Mater Res 23:798. doi:https://doi.org/10.1557/jmr.2008.0101

    Article  CAS  Google Scholar 

  16. Guest JK, Prévost JH (2007) Comput Methods Appl Mech Eng 196:1006. doi:https://doi.org/10.1016/j.cma.2006.08.006

    Article  Google Scholar 

  17. Mumtaz KA, Hopkinson N (2007) J Mater Sci 42:7647. doi:https://doi.org/10.1007/s10853-007-1661-3

    Article  CAS  Google Scholar 

  18. Dimitrov D, Schreve K, de Beer N (2006) Rapid Prototyping J 12:136. doi:https://doi.org/10.1108/13552540610670717

    Article  Google Scholar 

  19. Wang JW, Shaw LL (2006) J Am Ceram Soc 89:3285. doi:https://doi.org/10.1111/j.1551-2916.2006.01206.x

    Article  CAS  Google Scholar 

  20. Lin CY, Hsiao CC, Chen PQ, Hollister SJ (2004) Spine 29:1747. doi:https://doi.org/10.1097/01.BRS.0000134573.14150.1A

    Article  Google Scholar 

  21. Lin CY, Schek RM, Mistry AS, Shi XF, Mikos AG, Krebsbach PH et al (2005) Tissue Eng 11:1589. doi:https://doi.org/10.1089/ten.2005.11.1589

    Article  CAS  Google Scholar 

  22. Hollister SJ (2005) Nat Mater 4:518. doi:https://doi.org/10.1038/nmat1421

    Article  CAS  Google Scholar 

  23. Chen KZ, Feng XA (2004) Comput Aid Des 36:51. doi:https://doi.org/10.1016/S0010-4485(03)00077-0

    Article  Google Scholar 

  24. Zhu F, Chen KZ, Feng XA (2006) Adv Eng Software 37:20. doi:https://doi.org/10.1016/j.advengsoft.2005.03.016

    Article  CAS  Google Scholar 

  25. Seepersad CC, Kumar RS, Allen JK, Mistree F, McDowell DL (2004) J Comput Aided Mater Des 11:163. doi:https://doi.org/10.1007/s10820-005-3167-0

    Article  Google Scholar 

  26. Schramm U, Zhou M (eds) (2006) Recent developments in the commercial implementation of topology optimization. Springer, Netherlands

    Google Scholar 

  27. Bendsøe MP, Kikuchi N (1988) Comput Methods Appl M 71:197. doi:https://doi.org/10.1016/0045-7825(88)90086-2

    Article  Google Scholar 

  28. Sigmund O (1994) J Intell Mater Syst Struct 5:736. doi:https://doi.org/10.1177/1045389X9400500602

    Article  Google Scholar 

  29. Cheng KT, Olhoff N (1981) Int J Solids Struct 17:305. doi:https://doi.org/10.1016/0020-7683(81)90065-2

    Article  Google Scholar 

  30. Markworth AJ, Ramesh KS, Parks WP (1995) J Mater Sci 30:2183. doi:https://doi.org/10.1007/BF01184560

    Article  CAS  Google Scholar 

  31. Mori T, Tanaka K (1973) Acta Metall 21:571. doi:https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  32. Hill R (1965) J Mech Phys Solids 13:213. doi:https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  33. Reiter T, Dvorak GJ, Tvergaard V (1997) J Mech Phys Solids 45:1281. doi:https://doi.org/10.1016/S0022-5096(97)00007-0

    Article  CAS  Google Scholar 

  34. Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125. doi:https://doi.org/10.1063/1.1728579

    Article  CAS  Google Scholar 

  35. Zhou SW, Li Q (2008) Compu Mater Sci in progress

  36. Zhou M, Rozvany GIN (1991) Comput Methods Appl Mech Eng 89:309. doi:https://doi.org/10.1016/0045-7825(91)90046-9

    Article  Google Scholar 

  37. Stolpe M, Svanberg K (2001) Struct Multidiscip Optim 22:116. doi:https://doi.org/10.1007/s001580100129

    Article  Google Scholar 

  38. Bendsoe MP, Sigmund O (1999) Arch Appl Mech 69:635. doi:https://doi.org/10.1007/s004190050248

    Article  Google Scholar 

  39. Svanberg K (1987) Int J Numer Methods Eng 24:359. doi:https://doi.org/10.1002/nme.1620240207

    Article  Google Scholar 

  40. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, Orlando

    Google Scholar 

  41. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer, New York

    Book  Google Scholar 

  42. Wang MY, Zhou S, Ding H (2004) Struct Multidiscip Optim 28:262. doi:https://doi.org/10.1007/s00158-004-0436-6

    Article  Google Scholar 

  43. Bourdin B (2001) Int J Numer Methods Eng 50:2143. doi:https://doi.org/10.1002/nme.116

    Article  Google Scholar 

  44. Brandel B, Lakes RS (2001) J Mater Sci 36:5885. doi:https://doi.org/10.1023/A:1012928726952

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial supports from Australian Research Council (Nos. DP0558497 and DP0773726) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Li, Q. Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci 43, 5157–5167 (2008). https://doi.org/10.1007/s10853-008-2722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2722-y

Keywords

Navigation