Skip to main content
Log in

Study on microscale adhesion between solid surfaces with scanning probe

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The adhesion between two parallel solid surfaces is of great interest with the rapid development of micro-nano devices and instruments. The adhesion forces between a flat tip with a diameter ∼1.7 μm and some surface have been determined by recording the force-displacement curves with an atomic force microscope (AFM). The flat tip is used to prevent wear and mimic the adhesion between two parallel surfaces. The free energy of the solid surface is calculated by the contact angles between the probe liquids and the surface. The adhesion force between parallel solid surfaces cannot be predicted by the theory of thermodynamic surface free energy. The adhesion measurements were carried out under ambient conditions, in a nitrogen-filled glove box, under distilled water, and under potassium chloride (KCl) solution. The outcome shows that the real contact area without the applied load is only a small proportion of the apparent contact area. The measurement stability and repeatability of adhesion by the AFM depend on the surface characterization, measurement methods and the environment. Under different environments, there are different interactions and factors affecting the adhesion force, and the dominant interactions and factors may be different too. The various interactions and factors are mutually coupled to determine the final adhesion force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaghloul U, Papaioannou G, Bhushan B, et al. On the reliability of electrostatic NEMS/MEMS devices: Review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectron Reliab, 2011, 51: 1810–1818

    Article  Google Scholar 

  2. Salimi A. Characterization of nano scale adhesion at solid surface of oxidized PP wax/PP blends. Int J Adhes Adhes, 2012, 33: 61–66

    Article  Google Scholar 

  3. Johnson K L, Kendall K, Roberts A D. Surace energy and the contact of elastic solids. Proc R Soc Lond A, 1971, 324: 301–313

    Article  Google Scholar 

  4. Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci, 1975, 53: 314–325

    Article  Google Scholar 

  5. Maugis D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J Colloid Interface Sci, 1992, 150: 243–269

    Article  Google Scholar 

  6. Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep, 2005, 59(1–6): 1–152

    Article  Google Scholar 

  7. Eichenlaub S K. Van der Waals and electrostatic forces in adhesion between irregular particles and surfaces. Dissertation for the Doctoral Degree. Phoenix: Arizona State University, 2003

    Google Scholar 

  8. Liu D L, Martin J, Burnham N A. Optimal roughness for minimal adhesion. Appl Phys Lett, 2007, 91(4): 043107

    Article  Google Scholar 

  9. van Zwol P J, Palasantzas G, De Hosson J T M. Influence of roughness on capillary forces between hydrophilic surfaces. Phys Rev E, 2008, 78(3): 031606

    Article  Google Scholar 

  10. Yaqoob M A, de Rooij M B, Schipper D J. On the transition from bulk to ordered form of water: A theoretical model to calculate adhesion force due to capillary and van der Waals interaction. Tribol Lett, 2013, 49(3): 491–499

    Article  Google Scholar 

  11. Martin Y, Abraham D W, Wickramasinghe H K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett, 1988, 52(13): 1103–1105

    Article  Google Scholar 

  12. Erlandsson R, Hadziioannou G, Mate C M, et al. Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J Chem Phys, 1988, 89(8): 5190–5193

    Article  Google Scholar 

  13. Guo Y B, Wang D G, Zhang S W. Adhesion and friction of nanoparticles/ polyelectrolyte multilayer films by AFM and micro-tribometer. Tribol Int, 2011, 44(7–8): 906–915

    Article  Google Scholar 

  14. Zhang S, Zhang M, Li K. Adhesion force between aramid fibre and aramid fibrid by AFM. Polym Bull, 2011, 66(3): 351–362

    Article  Google Scholar 

  15. Pelin I M, Piednoir A, Machon D, et al. Adhesion forces between AFM tips and superficial dentin surfaces. J Colloid Interf Sci, 2012, 376: 262–268

    Article  Google Scholar 

  16. Raj G, Balnois E, Helias M A, et al. Measuring adhesion forces between model polysaccharide films and PLA bead to mimic molecular interactions in flax/PLA biocomposite. J Mater Sci, 2012, 47(5): 2175–2181

    Article  Google Scholar 

  17. Fahs A, Louarn G. Plant protein interactions studied using AFM force spectroscopy: Nanomechanical and adhesion properties. Phys Chem Chem Phys, 2013, 15(27): 11339–11348

    Article  Google Scholar 

  18. Chen L, Kim S, Wang X D, et al. Running-in process of Si-SiOx/ SiO2 pair at nanoscale — Sharp drops in friction and wear rate during initial cycles. Friction, 2013, 1: 81–91

    Article  Google Scholar 

  19. Grierson D S, Liu J, Carpick R W, et al. Adhesion of nanoscale asperities with power-law profiles. J Mech Phys Solids, 2013, 61(2): 597–610

    Article  Google Scholar 

  20. Fischer H R, Gelinck E R M. Determination of adhesion forces between smooth and structured solids. Appl Surf Sci, 2012, 258(22): 9011–9017

    Article  Google Scholar 

  21. Kappl M, Butt H J. The colloidal probe technique and its application to adhesion force measurements. Part Part Syst Char, 2002, 19(3): 129–143

    Article  Google Scholar 

  22. Ando Y. The effect of relative humidity on friction and pull-off forces measured on submicron-size asperity arrays. Wear, 2000, 238(1): 12–19

    Article  Google Scholar 

  23. Ando Y. Effect of contact geometry on the pull-off force evaluated under high-vacuum and humid atmospheric conditions. Langmuir, 2008, 24(4): 1418–1424

    Article  Google Scholar 

  24. Ferreira O D S, Gelinck E, de Graaf D, et al. Adhesion experiments using an AFM -parameters of influence. Appl Surf Sci, 2010, 257(1): 48–55

    Article  Google Scholar 

  25. Colak A, Wormeester H, Zandvliet H J W, et al. Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl Surf Sci, 2012, 258(18): 6938–6942

    Article  Google Scholar 

  26. Xie J, Xie H F, Liu X R, et al. Dry micro-grooving on Si wafer using a coarse diamond grinding. Int J Mach Tool Manu, 2012, 61: 1–8

    Article  Google Scholar 

  27. Gnecco E, Bennewitz R, Pfeiffer O, et al. Friction and Wear on the Atomic Scale. In: Bhushan B, ed. Springer Handbook of Nanotechnology. Heidelberg: Springer, 2010. 923–954

    Chapter  Google Scholar 

  28. Carpick R W, Batteas J, de Boer M P. Scanning Probe Studies of Nanoscale Adhesion between Solids in the Presence of Liquids and Monolayer Films. In: Bhushan B, ed. Springer Handbook of Nanotechnology. Heidelberg: Springer, 2007. 951–980

    Chapter  Google Scholar 

  29. Wen S Z, Huang P. Principles of Tribology. Singapore & Beijing: Wiley & Tsinghua University Press, 2012. 219–222

    Google Scholar 

  30. Owens D K, Wendt R C. Estimation of the surface free energy of polymers. J Appl Polym Sci, 1969, 13(8): 1741–1747

    Article  Google Scholar 

  31. Fowkes F M. Attractive forces at interfaces. J Ind Eng Chem, 1964, 56: 40–52

    Article  Google Scholar 

  32. Shimizu R N, Demarquette N R. Evaluation of surface energy of solid polymers using different models. J Appl Polym Sci, 2000, 76(12): 1831–1845

    Article  Google Scholar 

  33. Barber A H, Cohen S R, Wagner H D. Static and dynamic wetting measurements of single carbon nanotubes. Phys Rev Lett, 2004, 92(18): 186103

    Article  Google Scholar 

  34. Ishida N, Inoue T, Miyahara M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 2000, 16(16): 6377–6380

    Article  Google Scholar 

  35. Tyrrell J W G, Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett, 2001, 87(17): 176104

    Article  Google Scholar 

  36. Yang J W, Duan J M, Fornasiero D, et al. Very small bubble formation at the solid-water interface. J Phys Chem B, 2003, 107(25): 6139–6147

    Article  Google Scholar 

  37. Simonsen A C, Hansen P L, Klosgen B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J Colloid Interf Sci, 2004, 273(1): 291–299

    Article  Google Scholar 

  38. Serro A P, Colaco R, Saramago B. Adhesion forces in liquid media: Effect of surface topography and wettability. J Colloid Interf Sci, 2008, 325(2): 573–579

    Article  Google Scholar 

  39. Misra R P, Das S, Mitra S K. Electric double layer force between charged surfaces: Effect of solvent polarization. J Chem Phy, 2013, 138(11): 114703

    Article  Google Scholar 

  40. Chan D Y C, Mitchell D J. The free energy of an electrical double layer. J Colloid Interf Sci, 1983, 95(1): 193–197

    Article  Google Scholar 

  41. Israelachvilli J. Intermolecular and Surface Forces. Singapore: Elsevier Pte Ltd, 2011. 253–255

    Google Scholar 

  42. Senden T J, Drummond C J. Surface chemistry and tip-sample interactions in atomic force microscopy. Colloids Surf, A, 1995, 94(1): 29–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, T., Huang, P. Study on microscale adhesion between solid surfaces with scanning probe. Sci. China Technol. Sci. 56, 2934–2952 (2013). https://doi.org/10.1007/s11431-013-5404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5404-1

Keywords

Navigation